Glenn F King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500584/publications.pdf Version: 2024-02-01

CLENN E KINC

#	Article	IF	CITATIONS
1	Trends in peptide drug discovery. Nature Reviews Drug Discovery, 2021, 20, 309-325.	21.5	792
2	The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 2009, 10, 483-511.	2.5	683
3	Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 2011, 11, 1469-1484.	1.4	433
4	Spider-Venom Peptides: Structure, Pharmacology, and Potential for Control of Insect Pests. Annual Review of Entomology, 2013, 58, 475-496.	5.7	339
5	A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon, 2008, 52, 264-276.	0.8	276
6	Spider-Venom Peptides as Therapeutics. Toxins, 2010, 2, 2851-2871.	1.5	251
7	Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.	13.7	239
8	Nonlinear partial differential equations and applications: Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15693-15698.	3.3	218
9	Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon, 2012, 60, 478-491.	0.8	202
10	Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon, 2006, 47, 650-663.	0.8	200
11	Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science, 2018, 362, .	6.0	200
12	Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nature Structural Biology, 2000, 7, 505-513.	9.7	194
13	Spider-Venom Peptides as Bioinsecticides. Toxins, 2012, 4, 191-227.	1.5	190
14	Were arachnids the first to use combinatorial peptide libraries?. Peptides, 2005, 26, 131-139.	1.2	189
15	Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3750-3755.	3.3	180
16	The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nature Structural Biology, 1997, 4, 559-566.	9.7	172
17	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	1.2	172
18	Venomics as a drug discovery platform. Expert Review of Proteomics, 2009, 6, 221-224.	1.3	167

#	Article	IF	CITATIONS
19	Discovery of a selective Na _V 1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17534-17539.	3.3	164
20	ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Research, 2011, 39, D653-D657.	6.5	159
21	The MinD Membrane Targeting Sequence Is a Transplantable Lipid-binding Helix. Journal of Biological Chemistry, 2003, 278, 40050-40056.	1.6	146
22	The venom optimization hypothesis revisited. Toxicon, 2013, 63, 120-128.	0.8	142
23	Macromolecular NMR spectroscopy for the nonâ€spectroscopist. FEBS Journal, 2011, 278, 687-703.	2.2	140
24	Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis via Expression in the Periplasm of E. coli. PLoS ONE, 2013, 8, e63865.	1.1	140
25	From Foe to Friend: Using Animal Toxins to Investigate Ion Channel Function. Journal of Molecular Biology, 2015, 427, 158-175.	2.0	138
26	Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11911-11916.	3.3	130
27	Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nature Genetics, 2015, 47, 73-77.	9.4	130
28	Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biological Control, 2010, 52, 208-215.	1.4	126
29	Australian funnel-web spiders: master insecticide chemists. Toxicon, 2004, 43, 601-618.	0.8	125
30	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	5.8	122
31	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	1.6	120
32	The structure of versutoxin (δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure, 1997, 5, 1525-1535.	1.6	115
33	Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus) Tj ETQq1 3 99, 68-83.	l 0.784314 rgBT 1.2	/Overlock] 114
34	Structure and Mechanism of Action of Sda, an Inhibitor of the Histidine Kinases that Regulate Initiation of Sporulation in Bacillus subtilis. Molecular Cell, 2004, 13, 689-701.	4.5	110
35	On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon, 2011, 57, 512-524.	0.8	110
36	The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences, 2013, 70, 3665-3693.	2.4	110

#	Article	IF	CITATIONS
37	Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators. Molecular and Cellular Proteomics, 2012, 11, 640-650.	2.5	107
38	Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO Journal, 2002, 21, 3347-3357.	3.5	106
39	Selective Na _V 1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8077-E8085.	3.3	105
40	Clawing through Evolution: Toxin Diversification and Convergence in the Ancient Lineage Chilopoda (Centipedes). Molecular Biology and Evolution, 2014, 31, 2124-2148.	3.5	100
41	Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras CTPases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7763-7768.	3.3	99
42	The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology, 1988, 150, 131-137.	1.0	98
43	Animal toxins — Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochemical Pharmacology, 2020, 181, 114096.	2.0	97
44	Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10478-10483.	3.3	96
45	Peptide toxins that selectively target insect Na _V and Ca _V channels. Channels, 2008, 2, 100-116.	1.5	95
46	High Resolution NMR Solution Structure of the Leucine Zipper Domain of the c-Jun Homodimer. Journal of Biological Chemistry, 1996, 271, 13663-13667.	1.6	93
47	The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a. Toxins, 2015, 7, 4366-4380.	1.5	86
48	ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics, 2018, 34, 1074-1076.	1.8	86
49	A Dynamic Pharmacophore Drives the Interaction between Psalmotoxin-1 and the Putative Drug Target Acid-Sensing Ion Channel 1a. Molecular Pharmacology, 2011, 80, 796-808.	1.0	85
50	Modulation of insect Cav channels by peptidic spider toxins. Toxicon, 2007, 49, 513-530.	0.8	84
51	Centipede Venom: Recent Discoveries and Current State of Knowledge. Toxins, 2015, 7, 679-704.	1.5	84
52	Key Residues Characteristic of GATA N-fingers Are Recognized By FOG. Journal of Biological Chemistry, 1998, 273, 33595-33603.	1.6	83
53	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 651-663.	2.5	83
54	Mapping the Phosphoinositide-Binding Site on Chick Cofilin Explains How PIP2 Regulates the Cofilin-Actin Interaction. Molecular Cell, 2006, 24, 511-522.	4.5	82

#	Article	IF	CITATIONS
55	The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon, 2011, 57, 695-703.	0.8	82
56	Spider venomics: implications for drug discovery. Future Medicinal Chemistry, 2014, 6, 1699-1714.	1.1	81
57	Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Review of Proteomics, 2017, 14, 931-939.	1.3	81
58	Structure-function studies of omega-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. FEBS Journal, 1999, 264, 488-494.	0.2	79
59	Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels. Journal of Biological Chemistry, 2001, 276, 40306-40312.	1.6	79
60	The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation. PLoS ONE, 2011, 6, e16191.	1.1	79
61	The Structure of the KinA-Sda Complex Suggests an Allosteric Mechanism of Histidine Kinase Inhibition. Journal of Molecular Biology, 2007, 368, 407-420.	2.0	77
62	Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides. BioEssays, 2016, 38, 539-548.	1.2	76
63	Structural basis for the topological specificity function of MinE. Nature Structural Biology, 2000, 7, 1013-1017.	9.7	75
64	Nuclear Magnetic Resonance Characterization of the Jun Leucine Zipper Domain: Unusual Properties of Coiled-Coil Interfacial Polar Residues. Biochemistry, 1995, 34, 6164-6174.	1.2	74
65	Seven novel modulators of the analgesic target <scp>Na_V</scp> 1.7 uncovered using a highâ€throughput venomâ€based discovery approach. British Journal of Pharmacology, 2015, 172, 2445-2458.	2.7	74
66	Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae:) Tj ETQq0 0 0 r	gBT /Over 1,2	lock 10 Tf 50
67	No Gain, No Pain: Na _V 1.7 as an Analgesic Target. ACS Chemical Neuroscience, 2014, 5, 749-751.	1.7	73
68	Identification and Characterization of ProTx-III [<i>μ</i> -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula <i>Thrixopelma pruriens</i> . Molecular Pharmacology, 2015, 88, 291-303.	1.0	72
69	A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain. Cell, 2019, 178, 1362-1374.e16.	13.5	72
70	Venoms to the rescue. Science, 2018, 361, 842-844.	6.0	71
71	A comprehensive portrait of the venom of the giant red bull ant, <i>Myrmecia gulosa</i> , reveals a hyperdiverse hymenopteran toxin gene family. Science Advances, 2018, 4, eaau4640.	4.7	69
72	The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature, 2010, 467, 844-848.	13.7	68

#	Article	IF	CITATIONS
73	A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor). Toxins, 2013, 5, 2488-2503.	1.5	68
74	The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature Communications, 2018, 9, 755.	5.8	67
75	Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 2018, 154, 15-27.	0.8	67
76	Functional Significance of the β-Hairpin in the Insecticidal Neurotoxin ω-Atracotoxin-Hv1a. Journal of Biological Chemistry, 2001, 276, 26568-26576.	1.6	66
77	Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 2014, 32, 102-105.	9.4	66
78	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€⊋. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	7.2	66
79	Weaponization of a Hormone: Convergent Recruitment of Hyperglycemic Hormone into the Venom of Arthropod Predators. Structure, 2015, 23, 1283-1292.	1.6	66
80	Revisiting venom of the sea anemone Stichodactyla haddoni : Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. Journal of Proteomics, 2017, 166, 83-92.	1.2	64
81	The ω-atracotoxins: Selective blockers of insect M-LVA and HVA calcium channels. Biochemical Pharmacology, 2007, 74, 623-638.	2.0	63
82	Direct Visualization of Disulfide Bonds through Diselenide Proxies Using ⁷⁷ Se NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 9312-9314.	7.2	63
83	A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nature Communications, 2014, 5, 4350.	5.8	63
84	Molecular Phylogeny and Evolution of the Proteins Encoded by Coleoid (Cuttlefish, Octopus, and) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
85	Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits. Toxins, 2016, 8, 43.	1.5	62
86	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. Journal of Biological Chemistry, 2016, 291, 17049-17065.	1.6	62
87	Scanning Mutagenesis of ω-Atracotoxin-Hv1a Reveals a Spatially Restricted Epitope That Confers Selective Activity against Insect Calcium Channels. Journal of Biological Chemistry, 2004, 279, 44133-44140.	1.6	61
88	Dracula's children: Molecular evolution of vampire bat venom. Journal of Proteomics, 2013, 89, 95-111.	1.2	61
89	Scanning Mutagenesis of a Janus-faced Atracotoxin Reveals a Bipartite Surface Patch That Is Essential for Neurotoxic Function. Journal of Biological Chemistry, 2002, 277, 22806-22813.	1.6	59
90	Development of a rational nomenclature for naming peptide and protein toxins from sea anemones. Toxicon, 2012, 60, 539-550.	0.8	59

#	Article	IF	CITATIONS
91	Tying pest insects in knots: the deployment of spiderâ€venomâ€derived knottins as bioinsecticides. Pest Management Science, 2019, 75, 2437-2445.	1.7	59
92	Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11399-11408.	3.3	59
93	Mapping the MinE Site Involved in Interaction with the MinD Division Site Selection Protein of Escherichia coli. Journal of Bacteriology, 2003, 185, 4948-4955.	1.0	58
94	Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection. Molecular Microbiology, 2004, 54, 99-108.	1.2	58
95	ArachnoServer: a database of protein toxins from spiders. BMC Genomics, 2009, 10, 375.	1.2	58
96	Solution structure of a defensin-like peptide from platypus venom. Biochemical Journal, 1999, 341, 785-794.	1.7	57
97	A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. Journal of Magnetic Resonance, 2010, 204, 160-164.	1.2	57
98	Fusion to Snowdrop Lectin Magnifies the Oral Activity of Insecticidal ω-Hexatoxin-Hv1a Peptide by Enabling Its Delivery to the Central Nervous System. PLoS ONE, 2012, 7, e39389.	1.1	57
99	Isolation and pharmacological characterisation of \hat{I} -atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Letters, 2000, 470, 293-299.	1.3	56
100	STRUCTURE AND FUNCTION OF INSECTICIDAL NEUROTOXINS FROM AUSTRALIAN FUNNEL-WEB SPIDERS. Toxin Reviews, 2002, 21, 361-389.	1.5	56
101	NMR methods for determining disulfide-bond connectivities. Toxicon, 2010, 56, 849-854.	0.8	56
102	A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Current Biology, 2014, 24, 473-483.	1.8	56
103	Production and packaging of a biological arsenal: Evolution of centipede venoms under morphological constraint. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4026-4031.	3.3	56
104	Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf. PLoS ONE, 2013, 8, e81827.	1.1	56
105	Polar Explorers. Cell, 2001, 106, 13-16.	13.5	55
106	PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology, 2015, 99, 650-657.	2.0	55
107	Isolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula. PLoS ONE, 2013, 8, e73136.	1.1	55
108	Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from the venom of the Indian monocled cobra Naja kaouthia. Archives of Biochemistry and Biophysics, 2004, 425, 1-13.	1.4	54

#	Article	IF	CITATIONS
109	Sea Anemone Toxins: A Structural Overview. Marine Drugs, 2019, 17, 325.	2.2	54
110	Macromolecular NMR spectroscopy for the nonâ€spectroscopist: beyond macromolecular solution structure determination. FEBS Journal, 2011, 278, 704-715.	2.2	53
111	Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Molecular and Cellular Proteomics, 2017, 16, 552-566.	2.5	53
112	Backbone Dynamics of the c-Jun Leucine Zipper:Â15N NMR Relaxation Studiesâ€. Biochemistry, 1996, 35, 4867-4877.	1.2	52
113	Squeezers and Leaf-cutters: Differential Diversification and Degeneration of the Venom System in Toxicoferan Reptiles. Molecular and Cellular Proteomics, 2013, 12, 1881-1899.	2.5	52
114	Cyclization of Peptides by using Selenolanthionine Bridges. Angewandte Chemie - International Edition, 2012, 51, 10298-10302.	7.2	51
115	The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG. Journal of Biomolecular NMR, 1999, 13, 249-262.	1.6	50
116	Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics, 2014, 15, 177.	1.2	49
117	Involvement of the N-finger in the Self-association of GATA-1. Journal of Biological Chemistry, 1998, 273, 30560-30567.	1.6	48
118	A process of convergent amplification and tissueâ€specific expression dominates the evolution of toxin and toxinâ€like genes in sea anemones. Molecular Ecology, 2019, 28, 2272-2289.	2.0	48
119	Isolation of a funnel-web spider polypeptide with homology to mamba intestinal toxin 1 and the embryonic head inducer Dickkopf-1. Toxicon, 2000, 38, 429-442.	0.8	46
120	Modulatory features of the novel spider toxin μâ€TRTXâ€Df1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	2.7	46
121	High resolution 1 H NMR study of the solution structure of the S4 segment of the sodium channel protein. FEBS Letters, 1989, 257, 113-117.	1.3	45
122	Solution structure of endothelin-3 determined using NMR spectroscopy. Biochemistry, 1992, 31, 5640-5645.	1.2	45
123	Regulation of RhoGEF Activity by Intramolecular and Intermolecular SH3 Domain Interactions. Journal of Biological Chemistry, 2006, 281, 18774-18786.	1.6	45
124	Siteâ€Specific p <i>K</i> _a Determination of Selenocysteine Residues in Selenovasopressin by Using ⁷⁷ Se NMR Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 11952-11955.	7.2	44
125	Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels. Scientific Reports, 2016, 6, 34333.	1.6	44
126	The relationship between hetero-oligomer formation and function of the topological specificity domain of theEscherichia coliMinE protein. Molecular Microbiology, 1998, 30, 265-273.	1.2	43

#	Article	IF	CITATIONS
127	Construction of a Hypervirulent and Specific Mycoinsecticide for Locust Control. Scientific Reports, 2014, 4, 7345.	1.6	43
128	The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Molecular Microbiology, 2002, 44, 663-674.	1.2	42
129	Orally active acaricidal peptide toxins from spider venom. Toxicon, 2006, 47, 182-187.	0.8	42
130	Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon, 2009, 54, 56-61.	0.8	42
131	Functional Expression in Escherichia coli of the Disulfide-Rich Sea Anemone Peptide APETx2, a Potent Blocker of Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1605-1618.	2.2	41
132	The dimerization and topological specificity functions of MinE reside in a structurally autonomous C-terminal domain. Molecular Microbiology, 1999, 31, 1161-1169.	1.2	40
133	Understanding the Molecular Basis of Toxin Promiscuity: The Analgesic Sea Anemone Peptide APETx2 Interacts with Acid-Sensing Ion Channel 3 and hERG Channels via Overlapping Pharmacophores. Journal of Medicinal Chemistry, 2014, 57, 9195-9203.	2.9	40
134	Therapeutic Inhibition of Acid-Sensing Ion Channel 1a Recovers Heart Function After Ischemia–Reperfusion Injury. Circulation, 2021, 144, 947-960.	1.6	40
135	Spectroscopic identification of a dinuclear metal centre in manganese(II)-activated aminopeptidase P from Escherichia coli: implications for human prolidase. Journal of Biological Inorganic Chemistry, 1998, 3, 470-483.	1.1	39
136	Role of Interfacial Hydrophobic Residues in the Stabilization of the Leucine Zipper Structures of the Transcription Factors c-Fos and c-Jun. Journal of Biological Chemistry, 2002, 277, 23-31.	1.6	39
137	Proteomics and Deep Sequencing Comparison of Seasonally Active Venom Glands in the Platypus Reveals Novel Venom Peptides and Distinct Expression Profiles. Molecular and Cellular Proteomics, 2012, 11, 1354-1364.	2.5	39
138	Inhibition of acidâ€sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain. British Journal of Pharmacology, 2018, 175, 2204-2218.	2.7	39
139	Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins. Toxicon, 2018, 150, 297-303.	0.8	39
140	Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: The case of leucine zippers. Journal of Biomolecular NMR, 1996, 8, 193-206.	1.6	38
141	The Janusâ€faced atracotoxins are specific blockers of invertebrate K _{Ca} channels. FEBS Journal, 2008, 275, 4045-4059.	2.2	38
142	Cloning and activity of a novel α-latrotoxin from red-back spider venom. Biochemical Pharmacology, 2012, 83, 170-183.	2.0	38
143	Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Scientific Reports, 2018, 8, 11519.	1.6	37
144	Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. Biochemistry, 1986, 25, 1054-1062.	1.2	36

#	Article	IF	CITATIONS
145	Multifunctional warheads: Diversification of the toxin arsenal of centipedes via novel multidomain transcripts. Journal of Proteomics, 2014, 102, 1-10.	1.2	36
146	Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acidâ€sensing ion channel 1a. British Journal of Pharmacology, 2015, 172, 4985-4995.	2.7	35
147	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	1.6	35
148	Conformation of sarafotoxin-6b in aqueous solution determined by NMR spectroscopy and distance geometry. FEBS Letters, 1991, 282, 247-252.	1.3	34
149	The insecticidal spider toxin <scp>SFI</scp> 1 is a knottin peptide that blocks the pore of insect voltageâ€gated sodium channels via a large βâ€hairpin loop. FEBS Journal, 2015, 282, 904-920.	2.2	34
150	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	2.4	34
151	NaV1.1 inhibition can reduce visceral hypersensitivity. JCl Insight, 2018, 3, .	2.3	34
152	Structural and Biochemical Studies of Human Galanin: NMR Evidence for Nascent Helical Structures in Aqueous Solution. Biochemistry, 1995, 34, 4538-4545.	1.2	33
153	The Generation of1H-NMR-Detectable Mobile Lipid in Stimulated Lymphocytes: Relationship to Cellular Activation, the Cell Cycle, and Phosphatidylcholine-Specific Phospholipase C. Biochemical and Biophysical Research Communications, 1997, 239, 868-874.	1.0	33
154	Domain architecture and structure of the bacterial cell division protein DivIB. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6700-6705.	3.3	33
155	The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochemical Pharmacology, 2013, 85, 1542-1554.	2.0	33
156	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	1.1	33
157	Development of a Sensitive Peptide-Based Immunoassay:  Application to Detection of the Jun and Fos Oncoproteins. Biochemistry, 1996, 35, 9069-9075.	1.2	32
158	Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	3.3	32
159	Inhibition and active-site modelling of prolidase. FEBS Journal, 1989, 180, 377-384.	0.2	31
160	RNA polymerase-induced remodelling of NusA produces a pause enhancement complex. Nucleic Acids Research, 2015, 43, 2829-2840.	6.5	31
161	Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. Cellular and Molecular Life Sciences, 2018, 75, 3215-3229.	2.4	31
162	SVM-Based Prediction of Propeptide Cleavage Sites in Spider Toxins Identifies Toxin Innovation in an Australian Tarantula. PLoS ONE, 2013, 8, e66279.	1.1	30

#	Article	IF	CITATIONS
163	Proton NMR spectroscopic studies of dipeptidase in human erythrocytes. Biochemical and Biophysical Research Communications, 1983, 110, 305-312.	1.0	29
164	High-resolution solution structure of gurmarin, a sweet-taste-suppressing plant polypeptide. FEBS Journal, 1999, 264, 525-533.	0.2	29
165	The Dimerization Function of MinC Resides in a Structurally Autonomous C-Terminal Domain. Journal of Bacteriology, 2001, 183, 6684-6687.	1.0	29
166	Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Scientific Reports, 2017, 7, 3433.	1.6	29
167	Identification and Functional Characterization of Sugarcane Invertase Inhibitor (ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane. Frontiers in Plant Science, 2018, 9, 598.	1.7	29
168	An NMR investigation of the changes in plasma membrane triglyceride and phospholipid precursors during the activation of T-lymphocytes. Biochemistry, 1992, 31, 9098-9106.	1.2	28
169	Solution structure of a defensin-like peptide from platypus venom. Biochemical Journal, 1999, 341, 785.	1.7	28
170	Centipede venoms as a source of drug leads. Expert Opinion on Drug Discovery, 2016, 11, 1139-1149.	2.5	28
171	Fifteen years of Na _V 1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy?. British Journal of Pharmacology, 2022, 179, 3592-3611.	2.7	28
172	A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain, 2021, 162, 569-581.	2.0	28
173	Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula. Toxins, 2015, 7, 2494-2513.	1.5	27
174	Site-directed mutants of RTP of Bacillus subtilis and the mechanism of replication fork arrest 1 1Edited by M. Gottesman. Journal of Molecular Biology, 1999, 286, 1325-1335.	2.0	26
175	Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics, 2020, 20, e1900324.	1.3	26
176	A tale of two terminators: crystal structures sharpen the debate on DNA replication fork arrest mechanisms. Structure, 1997, 5, 1-5.	1.6	25
177	Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami. Scientific Reports, 2016, 6, 29538.	1.6	25
178	The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: Importance of interactions at the channel subunit interface and potential for engineering selective analogues. Biochemical Pharmacology, 2019, 163, 381-390.	2.0	25
179	Determination of the structure of symmetric coiled-coil proteins from NMR data: application of the leucine zipper proteins Jun and GCN4. Protein Engineering, Design and Selection, 1993, 6, 557-564.	1.0	24
180	Recombinant Expression of Margatoxin and Agitoxin-2 in Pichia pastoris: An Efficient Method for Production of KV1.3 Channel Blockers. PLoS ONE, 2012, 7, e52965.	1.1	24

#	Article	IF	CITATIONS
181	Studies of Rat Brain Metabolism Using Proton Nuclear Magnetic Resonance: Spectral Assignments and Monitoring of Prolidase, Acetylcholinesterase, and Glutaminase. Journal of Neurochemistry, 1984, 43, 1561-1567.	2.1	23
182	TheBacillus subtilisDNA Replication Terminator. Journal of Molecular Biology, 1996, 260, 54-69.	2.0	23
183	Measuring macromolecular diffusion using heteronuclear multiple-quantum pulsed-field-gradient NMR. Journal of Biomolecular NMR, 1997, 10, 1-8.	1.6	23
184	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	1.3	22
185	Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 872-882.	1.4	22
186	Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	1.1	22
187	Symmetry and secondary structure of the replication terminator protein of Bacillus subtilis: Sedimentation equilibrium and circular dichroic, infrared, and NMR spectroscopic studies. Biochemistry, 1993, 32, 10216-10223.	1.2	21
188	Role of the structurally disordered N- and C-terminal residues in the Janus-faced atracotoxins. Toxicon, 2002, 40, 1355-1361.	0.8	21
189	Isolation and characterization of a structurally unique β-hairpin venom peptide from the predatory ant Anochetus emarginatus. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2553-2562.	1.1	21
190	Venoms for all occasions: The functional toxin profiles of different anatomical regions in sea anemones are related to their ecological function. Molecular Ecology, 2022, 31, 866-883.	2.0	21
191	Artificial Septal Targeting of <i>Bacillus subtilis</i> Cell Division Proteins in <i>Escherichia coli</i> : an Interspecies Approach to the Study of Protein-Protein Interactions in Multiprotein Complexes. Journal of Bacteriology, 2008, 190, 6048-6059.	1.0	20
192	Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders. Toxicon, 2009, 53, 496-502.	0.8	20
193	A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli. Methods in Molecular Biology, 2017, 1586, 155-180.	0.4	20
194	The Use of Imaging Mass Spectrometry to Study Peptide Toxin Distribution in Australian Sea Anemones. Australian Journal of Chemistry, 2017, 70, 1235.	0.5	20
195	Venom Profiling of a Population of the Theraphosid Spider Phlogius crassipes Reveals Continuous Ontogenetic Changes from Juveniles through Adulthood. Toxins, 2017, 9, 116.	1.5	20
196	Fluorescence Imaging of Peripheral Nerves by a Na _v 1.7-Targeted Inhibitor Cystine Knot Peptide. Bioconjugate Chemistry, 2019, 30, 2879-2888.	1.8	20
197	Dimethylsulphoxide and trimethylamine-N-oxide as bacterial electron transport acceptors: use of nuclear magnetic resonance to assay and characterise the reductase system in Rhodobacter capsulatus. Archives of Microbiology, 1987, 149, 47-51.	1.0	19
198	The Lethal Toxin from Australian Funnel-Web Spiders Is Encoded by an Intronless Gene. PLoS ONE, 2012, 7, e43699.	1.1	19

#	Article	IF	CITATIONS
199	Structural and Molecular Diversification of the Anguimorpha Lizard Mandibular Venom Gland System in the Arboreal Species Abronia graminea. Journal of Molecular Evolution, 2012, 75, 168-183.	0.8	19
200	Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1511-1527.	2.2	19
201	Aphicidal efficacy of scorpion- and spider-derived neurotoxins. Toxicon, 2013, 70, 114-122.	0.8	19
202	Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochemical Pharmacology, 2014, 89, 276-286.	2.0	19
203	Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data. Journal of Biomolecular NMR, 2016, 66, 195-208.	1.6	19
204	Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na _V 1.7. Bioconjugate Chemistry, 2018, 29, 3309-3319.	1.8	19
205	A selective NaV1.1 activator with potential for treatment of Dravet syndrome epilepsy. Biochemical Pharmacology, 2020, 181, 113991.	2.0	19
206	Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.	1.2	18
207	The solution structure of the leucine zipper motif of the Jun oncoprotein homodimer. FEBS Journal, 1993, 214, 415-424.	0.2	17
208	Two-Dimensional 1H NMR Studies of Membrane Changes during the Activation of Primary T Lymphocytes. ImmunoMethods, 1994, 4, 127-138.	0.8	17
209	1H-NMR visible neutral lipids in activated T lymphocytes: relationship to phosphatidylcholine cycling. Lipids and Lipid Metabolism, 1996, 1303, 215-221.	2.6	17
210	Reorganization of terminator DNA upon binding replication terminator protein: implications for the functional replication fork arrest complex. Nucleic Acids Research, 1997, 25, 590-596.	6.5	17
211	Localization of Na _v 1.7 in the normal and injured rodent olfactory system indicates a critical role in olfaction, pheromone sensing and immune function. Channels, 2012, 6, 103-110.	1.5	17
212	Can we resolve the taxonomic bias in spider venom research?. Toxicon: X, 2019, 1, 100005.	1.2	17
213	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, <i>Doratifera vulnerans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
214	The assimilation of tri- and tetrapeptides by human erythrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 846, 127-134.	1.9	16
215	Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins?. Antioxidants and Redox Signaling, 2013, 19, 1976-1980.	2.5	16
216	Missiles of Mass Disruption: Composition and Glandular Origin of Venom Used as a Projectile Defensive Weapon by the Assassin Bug Platymeris rhadamanthus. Toxins, 2019, 11, 673.	1.5	16

#	Article	IF	CITATIONS
217	Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie, 2012, 94, 608-616.	1.3	15
218	Methods for Deployment of Spider Venom Peptides as Bioinsecticides. Advances in Insect Physiology, 2014, , 389-411.	1.1	15
219	Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a. Journal of Chemical Information and Modeling, 2016, 56, 127-138.	2.5	15
220	Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells. Cell Death Discovery, 2018, 4, 19.	2.0	15
221	Olfactory bulbâ€ŧargeted quantum dot (QD) bioconjugate and Kv1.3 blocking peptide improve metabolic health in obese male mice. Journal of Neurochemistry, 2021, 157, 1876-1896.	2.1	15
222	Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. Journal of Medicinal Chemistry, 2020, 63, 12773-12785.	2.9	15
223	A peptide toxin in ant venom mimics vertebrate EGF-like hormones to cause long-lasting hypersensitivity in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
224	Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix. Toxicon, 2016, 123, 62-70.	0.8	14
225	Venom Peptides with Dual Modulatory Activity on the Voltage-Gated Sodium Channel Na _V 1.1 Provide Novel Leads for Development of Antiepileptic Drugs. ACS Pharmacology and Translational Science, 2020, 3, 119-134.	2.5	14
226	Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 738043.	1.8	14
227	Determination of the solution structure of a platelet-adhesion peptide of von Willebrand factor. Biochemistry, 1992, 31, 11152-11158.	1.2	13
228	Cloning, expression, and spectroscopic studies of the Jun leucine zipper domain. FEBS Journal, 1994, 219, 877-886.	0.2	13
229	The Vps4 C-terminal helix is a critical determinant for assembly and ATPase activity and has elements conserved in other members of the meiotic clade of AAA ATPases. FEBS Journal, 2008, 275, 1427-1449.	2.2	13
230	CHAPTER 2. The Structural Universe of Disulfide-Rich Venom Peptides. RSC Drug Discovery Series, 2015, , 37-79.	0.2	13
231	Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target. Biochemical Pharmacology, 2018, 158, 60-72.	2.0	13
232	Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Research, 2016, 5, 1822.	0.8	13
233	A model genetic system for testing the in vivo function of peptide toxins. Peptides, 2007, 28, 51-56.	1.2	12
234	The divisomal protein DivIB contains multiple epitopes that mediate its recruitment to incipient division sites. Molecular Microbiology, 2008, 67, 1143-1155.	1.2	12

#	Article	IF	CITATIONS
235	Evidence from Artificial Septal Targeting and Site-Directed Mutagenesis that Residues in the Extracytoplasmic β Domain of DivIB Mediate Its Interaction with the Divisomal Transpeptidase PBP 2B. Journal of Bacteriology, 2010, 192, 6116-6125.	1.0	12
236	Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels. Scientific Reports, 2015, 5, 14763.	1.6	12
237	Buzz Kill: Function and Proteomic Composition of Venom from the Giant Assassin Fly Dolopus genitalis (Diptera: Asilidae). Toxins, 2018, 10, 456.	1.5	12
238	The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro. Veterinary Parasitology, 2019, 270, 40-46.	0.7	12
239	Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochemical Pharmacology, 2020, 174, 113782.	2.0	12
240	It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula. Biomedicines, 2020, 8, 185.	1.4	12
241	Tentacle Morphological Variation Coincides with Differential Expression of Toxins in Sea Anemones. Toxins, 2021, 13, 452.	1.5	12
242	Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Research, 2016, 5, 1822.	0.8	12
243	Theoretical and Practical Aspects of NMR Studies of Cells. ImmunoMethods, 1994, 4, 85-97.	0.8	11
244	Structure of the sporulation histidine kinase inhibitor Sda fromBacillus subtilisand insights into its solution state. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 574-581.	2.5	11
245	Role of the PAS Sensor Domains in the Bacillus subtilis Sporulation Kinase KinA. Journal of Bacteriology, 2013, 195, 2349-2358.	1.0	11
246	Chapter 8. Therapeutic Applications ofÂSpider-Venom Peptides. RSC Drug Discovery Series, 2015, , 221-244.	0.2	11
247	Venom chemistry underlying the painful stings of velvet ants (Hymenoptera: Mutillidae). Cellular and Molecular Life Sciences, 2021, 78, 5163-5177.	2.4	11
248	Venom-derived modulators of epilepsy-related ion channels. Biochemical Pharmacology, 2020, 181, 114043.	2.0	11
249	Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri. Toxins, 2017, 9, 155.	1.5	10
250	Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. Journal of Visualized Experiments, 2018, , .	0.2	10
251	Development of High-Throughput Fluorescent-Based Screens to Accelerate Discovery of P2X Inhibitors from Animal Venoms. Journal of Natural Products, 2019, 82, 2559-2567.	1.5	10
252	The unusual conformation of crossâ€strand disulfide bonds is critical to the stability of βâ€hairpin peptides. Proteins: Structure, Function and Bioinformatics, 2020, 88, 485-502.	1.5	10

#	Article	IF	CITATIONS
253	Weaponisation â€~on the fly': Convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies. Insect Biochemistry and Molecular Biology, 2020, 118, 103310.	1.2	10
254	Pharmacological Inhibition of the Voltage-Gated Sodium Channel NaV1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacology and Translational Science, 2021, 4, 1362-1378.	2.5	10
255	Multipurpose peptides: The venoms of Amazonian stinging ants contain anthelmintic ponericins with diverse predatory and defensive activities. Biochemical Pharmacology, 2021, 192, 114693.	2.0	10
256	NMR Methods for Measuring Membrane Transport. Sub-Cellular Biochemistry, 1994, 23, 247-327.	1.0	10
257	Fluorescence labeling of a NaV1.7-targeted peptide for near-infrared nerve visualization. EJNMMI Research, 2020, 10, 49.	1.1	10
258	A Versatile and Robust Serine Protease Inhibitor Scaffold from Actinia tenebrosa. Marine Drugs, 2019, 17, 701.	2.2	9
259	Venom composition of the endoparasitoid wasp Cotesia flavipes (Hymenoptera: Braconidae) and functional characterization of a major venom peptide. Toxicon, 2021, 202, 1-12.	0.8	9
260	Enkephalin degradation by human erythrocytes and hemolysates studied using 1H NMR spectroscopy. Archives of Biochemistry and Biophysics, 1985, 242, 515-522.	1.4	8
261	Periplasmic Expression of 4/7 α-Conotoxin TxIA Analogs in E. coli Favors Ribbon Isomer Formation – Suggestion of a Binding Mode at the α7 nAChR. Frontiers in Pharmacology, 2019, 10, 577.	1.6	8
262	Heterodimeric Insecticidal Peptide Provides New Insights into the Molecular and Functional Diversity of Ant Venoms. ACS Pharmacology and Translational Science, 2020, 3, 1211-1224.	2.5	8
263	Natural Born Insect Killers: Spider-venom Peptides and Their Potential for Managing Arthropod Pests. Outlooks on Pest Management, 2013, 24, 16-19.	0.1	7
264	Functional implications of large backbone amplitude motions of the glycoprotein 130â€binding epitope of interleukinâ€6. FEBS Journal, 2014, 281, 2471-2483.	2.2	7
265	CHAPTER 3. Venoms-Based Drug Discovery: Proteomic and Transcriptomic Approaches. RSC Drug Discovery Series, 2015, , 80-96.	0.2	7
266	Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines, 2018, 6, 90.	1.4	7
267	Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins, 2020, 12, 674.	1.5	7
268	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	2.0	7
269	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	1.9	7
270	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7

#	Article	IF	CITATIONS
271	Histidine Kinases as Antimicrobial Targets: Prospects and Pitfalls. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1144-1154.	1.1	6
272	Derivation of Peptide and Protein Structure using NMR Spectroscopy. , 2010, , 279-325.		6
273	Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica. PLoS ONE, 2016, 11, e0156291.	1.1	6
274	Addition of K22 Converts Spider Venom Peptide Pme2a from an Activator to an Inhibitor of NaV1.7. Biomedicines, 2020, 8, 37.	1.4	6
275	Total Synthesis of the Spider-Venom Peptide Hi1a. Organic Letters, 2021, 23, 8375-8379.	2.4	6
276	Proteotranscriptomics reveals the secretory dynamics of teratocytes, regulators of parasitization by an endoparasitoid wasp. Journal of Insect Physiology, 2022, 139, 104395.	0.9	6
277	Zipping up transcription factors: Rational design of anti-Jun and anti-Fos peptides. International Journal of Peptide Research and Therapeutics, 1997, 4, 67-77.	0.1	5
278	284. The Bio-Logic of Venom Complexity. Toxicon, 2012, 60, 241-242.	0.8	5
279	Crouching Tiger, Hidden Protein: Searching for Insecticidal Toxins in Venom of the Red Tiger Assassin Bug (Havinthus rufovarius). Toxins, 2021, 13, 3.	1.5	5
280	Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system. Nature Communications, 2022, 13, 260.	5.8	5
281	Letter to the Editor: Backbone and side-chain 1H, 15N, and 13C assignments for the ? domain of the bacterial cell division protein DivIB. Journal of Biomolecular NMR, 2005, 31, 261-262.	1.6	4
282	The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation. Frontiers in Pharmacology, 2021, 12, 789570.	1.6	4
283	No evidence for bradykinin hydrolysis in human erythrocyte suspensions: H NMR studies. American Journal of Hematology, 1987, 25, 183-189.	2.0	3
284	A nuclear magnetic resonance study of alamethicin-, δ-haemolysin-, and melittin-induced sodium leakage from large unilamellar vesicles. Biochemical Society Transactions, 1988, 16, 594-595.	1.6	3
285	Zipping up transcription factors: Rational design of anti-Jun and anti-Fos peptides. International Journal of Peptide Research and Therapeutics, 1997, 4, 67-77.	0.1	3
286	Controlling leucine zipper specificity with interfacial hydrophobic residues. International Journal of Peptide Research and Therapeutics, 1999, 6, 381-390.	0.1	3
287	NMR structure and dynamics of inhibitory repeat domain variant 12, a plant protease inhibitor from Capsicum annuum, and its structural relationship to other plant protease inhibitors. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1388-1397.	2.0	3
288	Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Molecular Pharmaceutics, 2021, 18, 940-951.	2.3	3

#	Article	IF	CITATIONS
289	Measurement of peptide transport using proton nuclear magnetic resonance spectroscopy. Biochemical Society Transactions, 1988, 16, 635-636.	1.6	2
290	Backbone and side-chain 1H, 15N, and 13C assignments for the topological specificity domain of the MinE cell division protein. Journal of Biomolecular NMR, 1999, 13, 395-396.	1.6	2
291	Backbone and side-chain 1H, 15N, and 13C assignments for chick cofilin. Journal of Biomolecular NMR, 2002, 22, 193-194.	1.6	2
292	From kinetics to imaging: an NMR odyssey—a festschrift symposium in honour of Philip William Kuchel. European Biophysics Journal, 2013, 42, 1-2.	1.2	2
293	The Neurotoxic Mode of Action of Venoms from the Spider Family Theraphosidae. , 2013, , 203-215.		2
294	Does Nature do Ion Channel Drug Discovery Better than Us?. RSC Drug Discovery Series, 2014, , 297-319.	0.2	2
295	The Tarantula Toxin ω-Avsp1a Specifically Inhibits Human CaV3.1 and CaV3.3 via the Extracellular S3-S4 Loop of the Domain 1 Voltage-Sensor. Biomedicines, 2022, 10, 1066.	1.4	2
296	Backbone and Side-Chain 1H, 15N and 13C Assignments for the cis Conformer of the β Domain of the Bacterial Cell Division Protein DivIB. Journal of Biomolecular NMR, 2005, 33, 135-135.	1.6	1
297	Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ. Biomolecular NMR Assignments, 2015, 9, 387-391.	0.4	1
298	Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1245-1250.	1.7	1
299	The structural conformation of the tachykinin domain drives the antiâ€ŧumoral activity of an octopus peptide in melanoma BRAF ^{V600E} . British Journal of Pharmacology, 0, , .	2.7	1
300	Spider toxins: A new group of potassium channel modulators. Journal of Computer - Aided Molecular Design, 1999, 15/16, 61-69.	1.0	0
301	Controlling leucine zipper specificity with interfacial hydrophobic residues. International Journal of Peptide Research and Therapeutics, 1999, 6, 381-390.	0.1	0
302	Membrane-Binding Properties of Gating-Modifier and Pore Blocking Toxins: Membrane Interaction is not a Prerequisite for Modification of Channel Gating. Biophysical Journal, 2016, 110, 29a.	0.2	0
303	Derivation of Peptide and Protein Structure using NMR Spectroscopy. , 2010, , 14-49.		0