Kristen Fousek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500207/publications.pdf

Version: 2024-02-01

38 papers

1,842 citations

687363 13 h-index 677142 22 g-index

42 all docs 42 docs citations

42 times ranked 2734 citing authors

#	Article	IF	CITATIONS
1	Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF- \hat{l}^2 signaling enables PD-L1â \in "mediated tumor eradication. Journal of Clinical Investigation, 2022, 132, .	8.2	50
2	CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia, 2021, 35, 75-89.	7.2	107
3	Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression., 2021, 219, 107692.		128
4	Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers, 2021, 13, 968.	3.7	9
5	Tumor Plasticity and Resistance to Immunotherapy. Trends in Cancer, 2020, 6, 432-441.	7.4	88
6	Simultaneous inhibition of CXCR1/2, TGF- \hat{l}^2 , and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. , 2020, 8, e000326.		54
7	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
8	Tandem CAR T cells targeting HER2 and IL13R \hat{l} ±2 mitigate tumor antigen escape. Journal of Clinical Investigation, 2019, 129, 3464-3464.	8.2	20
9	Targeting ceramide synthase 6–dependent metastasis-prone phenotype in lung cancer cells. Journal of Clinical Investigation, 2019, 129, 3464-3464.	8.2	3
10	Abstract CN08-01: IL-8 in tumor progression. , 2019, , .		0
11	Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology, 2018, 20, 506-518.	1.2	306
12	TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Research, 2018, 78, 489-500.	0.9	122
13	A homing system targets therapeutic T cells to brain cancer. Nature, 2018, 561, 331-337.	27.8	36
14	Targeting CD19-negative relapsed B-acute lymphoblastic leukemia using trivalent CAR T cells Journal of Clinical Oncology, 2018, 36, 121-121.	1.6	8
15	Abstract A50: Trivalent CAR T cells mitigate CD19-negative relapse and improve tumor control in primary pre-B cell acute lymphoblastic leukemia (B-ALL). , 2018, , .		O
16	A cellular platform enables targeted brain delivery of T cells. Cytotherapy, 2017, 19, S13.	0.7	0
17	IMMU-10. ENGINEERED PD-L1 RECEPTORS AUGMENT ANTI-TUMOR ACTIVITY OF HER2 CAR T CELLS IN HIGH GRADE GLIOMA. Neuro-Oncology, 2017, 19, iv29-iv29.	1.2	0
18	A cellular platform to enable targeted brain delivery of T cells to glioblastoma Journal of Clinical Oncology, 2017, 35, 2053-2053.	1.6	3

#	Article	IF	CITATIONS
19	Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. Journal of Clinical Investigation, 2016, 126, 3036-3052.	8.2	515
20	HG-108MULTISPECIFIC CHIMERIC ANTIGEN RECEPTOR (CAR) T-CELLS OVERCOME INTER-PATIENT TUMOR HETEROGENEITY AND EXHIBIT ENHANCED ANTITUMOR FUNCTIONALITY IN THE TREATMENT OF GLIOBLASTOMA. Neuro-Oncology, 2016, 18, iii73.3-iii73.	1.2	0
21	392. Super-Resolution (STED) Imaging Reveals Simultaneous Co-Docking of Tandem Chimeric Antigen Receptors to Two Target Antigens Enhancing T Cell Functionality and Mitigating Antigen Escape. Molecular Therapy, 2016, 24, S155-S156.	8.2	0
22	A Bispecific Chimeric Antigen Receptor Molecule Enhances the Anti-Glioblastoma Efficacy of T Cells Through Dual Immunological Synapse Formation. Cytotherapy, 2016, 18, S8-S9.	0.7	0
23	Abstract 2312: TEM8/ANTXR1 specific T cells co-target tumor stem cells and tumor vasculature in triple-negative breast cancer., 2016,,.		2
24	Abstract PD3-07: TEM8 specific CAR T cells serve as a novel targeted therapy for triple negative breast cancer and its supporting endothelium. , $2016, \ldots$		0
25	A bispecific chimeric antigen receptor molecule enhances T cell activation through dual immunological synapse formation and offsets antigen escape in glioblastoma. , 2015, 3, .		5
26	720. Triple-Negative Breast Cancer Cells and Tumor Endothelium Are Killed by Targeting Tumor Endothelial Marker 8 (TEM8). Molecular Therapy, 2015, 23, S287-S288.	8.2	0
27	721. Safety of Multiple Doses of CAR T Cells. Molecular Therapy, 2015, 23, S288.	8.2	1
28	The Evolution of T-cell Therapies for Solid Malignancies. Clinical Cancer Research, 2015, 21, 3384-3392.	7.0	71
29	Safety of multiple doses of car T cells. Cytotherapy, 2015, 17, S12-S13.	0.7	0
30	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	1.4	5
31	Abstract B74: Co-targeting the tumor and its associated vasculature in glioblastoma. , 2015, , .		O
32	Dual targeting of the tumor and its associated vasculature using a single bispecific chimeric antigen receptor molecule. , $2014, 2, \ldots$		0
33	TEM8 specific T cells target the tumor cells and tumor-associated vasculature in triple negative breast cancer. , 2014, 2, .		2
34	Abstract LB-264: Two is better than one: Adoptive T cell therapy targeting tumor antigens and the tumor endothelium potentiates T cell activation and cytolytic activity. , 2014, , .		0
35	Abstract LB-199: A rationally designed bispecific chimeric antigen receptor molecule that simultaneously redirects T cells to target HER2 and GD2 in osteosarcoma. Cancer Research, 2014, 74, LB-199-LB-199.	0.9	1
36	Phase I study of nelfinavir in liposarcoma. Cancer Chemotherapy and Pharmacology, 2012, 70, 791-799.	2.3	29

3

#	Article	IF	CITATION
37	Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding proteinâ€1 and activating transcription factor 6 in castrationâ€resistant prostate cancer. FEBS Journal, 2012, 279, 2399-2411.	4.7	55
38	Nelfinavir Induces Liposarcoma Apoptosis through Inhibition of Regulated Intramembrane Proteolysis of SREBP-1 and ATF6. Clinical Cancer Research, 2011, 17, 1796-1806.	7.0	68