Pascal D C Dietzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350002/publications.pdf

Version: 2024-02-01

61 papers

5,586 citations

26 h-index

218677

62 g-index

64 all docs

64
docs citations

64 times ranked 5426 citing authors

#	Article	IF	Citations
1	Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19, 7362.	6.7	633
2	Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chemical Communications, 2006, , 959.	4.1	596
3	The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities. Journal of the American Chemical Society, 2007, 129, 3612-3620.	13.7	575
4	An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains. Angewandte Chemie - International Edition, 2005, 44, 6354-6358.	13.8	528
5	Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 2008, 130, 8386-8396.	13.7	384
6	Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chemical Communications, 2008, , 5125.	4.1	348
7	Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. Journal of Catalysis, 2008, 259, 161-164.	6.2	297
8	Baseâ€Induced Formation of Two Magnesium Metalâ€Organic Framework Compounds with a Bifunctional Tetratopic Ligand. European Journal of Inorganic Chemistry, 2008, 2008, 3624-3632.	2.0	295
9	Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks. Chemistry - A European Journal, 2008, 14, 2389-2397.	3.3	250
10	Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. Chemistry of Materials, 2008, 20, 4957-4968.	6.7	195
11	Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chemical Communications, 2010, 46, 4962.	4.1	173
12	A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals. Chemical Science, 2013, 4, 3544.	7.4	172
13	CO Adsorption on CPO-27-Ni Coordination Polymer: Spectroscopic Features and Interaction Energy. Journal of Physical Chemistry C, 2009, 113, 3292-3299.	3.1	121
14	Response of CPO-27-Ni towards CO, N2 and C2H4. Physical Chemistry Chemical Physics, 2009, 11, 9811.	2.8	87
15	Methane storage on CPO-27-Ni pellets. Journal of Porous Materials, 2011, 18, 289-296.	2.6	78
16	Tetraorganylammonium Superoxide Compounds:Â Close to Unperturbed Superoxide Ions in the Solid State. Journal of the American Chemical Society, 2004, 126, 4689-4696.	13.7	61
17	Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution. Journal of Materials Chemistry A, 2015, 3, 4827-4839.	10.3	61
18	The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties. Microporous and Mesoporous Materials, 2012, 157, 62-74.	4.4	59

#	Article	IF	CITATIONS
19	A scandium coordination polymer constructed from trimeric octahedral building blocks and 2,5-dihydroxyterephthalate. Dalton Transactions, 2006, , 2055-2057.	3.3	52
20	Synthesis and crystal structure determination of tetramethylammonium auride. Chemical Communications, 2001, , 2208-2209.	4.1	46
21	Coordination Polymers Based on the 2,5â€Dihydroxyterephthalate Ion and Alkaline Earth Metal (Ca, Sr) and Manganese CationsÂÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1953-1958.	1.2	42
22	Incorporation of an intact dimeric Zr ₁₂ oxo cluster from a molecular precursor in a new zirconium metal–organic framework. Chemical Communications, 2018, 54, 2735-2738.	4.1	39
23	An Inâ€Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPOâ€⊋7â€M. ChemSusChem, 2017, 10, 1710-1719.	6.8	30
24	Idiosyncrasies of Co2(dhtp): In situ-annealing by methanol. Microporous and Mesoporous Materials, 2014, 183, 117-123.	4.4	28
25	Morphology control in modulated synthesis of metal-organic framework CPO-27. Microporous and Mesoporous Materials, 2019, 275, 207-213.	4.4	28
26	Increased dimensionalities of zinc–diphenic acid coordination polymers by simultaneous or subsequent addition of neutral bridging ligands. Dalton Transactions, 2006, , 586-593.	3.3	23
27	The effect of solvent and temperature in the synthesis of CPO-27-Ni by reflux. Microporous and Mesoporous Materials, 2015, 203, 238-244.	4.4	21
28	A Permanently Porous Yttrium–Organic Framework Based on an Extended Tridentate Phosphine Containing Linker. Inorganic Chemistry, 2017, 56, 12830-12838.	4.0	20
29	Syntheses, Structures, and Polymorphism of βâ€Diketonato Complexes – Co(thd) ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 247-254.	1.2	19
30	Polymer nanocomposite coatings based on polyhedral oligosilsesquioxanes: route for industrial manufacturing and barrier properties. Journal of Nanoparticle Research, 2011, 13, 4691-4701.	1.9	18
31	On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal–organic frameworks. Physical Chemistry Chemical Physics, 2017, 19, 26346-26357.	2.8	17
32	Modification of Network and Pore Dimensionality in Metal–Organic Frameworks Containing a Secondary Phosphine Functionality. Crystal Growth and Design, 2017, 17, 3257-3266.	3.0	16
33	Open Metal Sites in the Metal–Organic Framework CPO-27-Cu: Detection of Regular and Defect Copper Species by CO and NO Probe Molecules. Journal of Physical Chemistry C, 2018, 122, 17238-17249.	3.1	15
34	Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous and Mesoporous Materials, 2020, 309, 110503.	4.4	14
35	Functionalization of CPO-27-Ni through metal hexacarbonyls: The role of open Ni2+ sites. Microporous and Mesoporous Materials, 2012, 157, 56-61.	4.4	13
36	Mixed Ligand Complexes of Cobalt(II) – Synthesis, Structure, and Properties of Co 4 (thd) 4 (OEt) 4. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1371-1381.	1.2	12

#	Article	IF	CITATIONS
37	Low-Temperature Adsorption of H ₂ and D ₂ on Dehydrated and Water Precovered CPO-27-Ni. Journal of Physical Chemistry C, 2016, 120, 23083-23092.	3.1	9
38	Superoxide Compounds of the Large Pseudo-Alkali-Metal Ions Tetramethylammonium, -Phosphonium, and -Arsonium. Chemistry - an Asian Journal, 2007, 2, 66-75.	3.3	8
39	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	3.3	8
40	The first crystal structure with pyrazine-2-carboxylato-3-amide as a ligand. Synthesis and structure of cis - N , cis - O , trans - O -diaquobis(pyrazine-2-carboxylato- 3-amide)nickel dihydrate. Journal of Coordination Chemistry, 2007, 60, 431-437.	2.2	7
41	Fixed Bed Reactor Validation of a Mayenite Based Combined Calcium–Copper Material for Hydrogen Production through Ca–Cu Looping. Industrial & Engineering Chemistry Research, 2019, 58, 14664-14677.	3.7	7
42	Metal–Organic Frameworks – Heading towards Application. European Journal of Inorganic Chemistry, 2016, 2016, 4273-4274.	2.0	6
43	Two New Series of Coordination Polymers and Evaluation of Their Properties by Density Functional Theory. Crystal Growth and Design, 2016, 16, 339-346.	3.0	6
44	Carbon dioxide induced structural phase transition in metal–organic frameworks CPO-27. CrystEngComm, 2020, 22, 4353-4358.	2.6	6
45	A calcium zirconate based combined material for calcium-copper chemical looping technology. International Journal of Greenhouse Gas Control, 2020, 95, 102953.	4.6	6
46	Dimeric Sandwich-like Ion Pairs in the Crystal Structure of Tetrabutylammonium Ozonide Ammoniate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 2276-2280.	1.2	5
47	Poly[bis(1,3-dimethylimidazolidin-2-one)(î¼ ₂ -2,5-dioxidoterephthalato)zirconium(IV)]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m152-m152.	0.2	5
48	Electrospray Mass Spectrometry Investigation into the Formation of CPO-27. Crystal Growth and Design, 2019, 19, 2089-2096.	3.0	5
49	Poly[bis(1,3-dimethyl-1,3-diazinan-2-one)(2,5-dioxidoterephthalato)zirconium(IV)]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m153-m153.	0.2	4
50	Variation of Desolvation Behavior in Two Isostructural Metal–Organic Frameworks Based on a Flexible, Racemic Bifunctional Organic Linker. European Journal of Inorganic Chemistry, 2016, 2016, 4430-4439.	2.0	4
51	Tetramethylphosphonium hydrogen carbonate. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, o1003-o1004.	0.2	3
52	Synthesis and Crystal Structures of Tris-[3, 5-bis(trifluoromethyl)phenyl]arsine Oxide at 293 and 100 K and the Localization of the Trifluoromethyl Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 1573-1577.	1,2	3
53	4,4′-Dimethoxybiphenyl-3,3′-dicarboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o615-o615.	0.2	2
54	Crystal structure of dimethyl 4,4′-dimethoxybiphenyl-3,3′-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 328-330.	0.5	2

#	Article	IF	CITATIONS
55	The Crystal Structures of the Room Temperature and the Low Temperature Phase of Dimethylammonium Trifluoromethanesulfonate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1410-1416.	1.2	1
56	The Mixedâ€Valence, Mixedâ€Ligand Complex Co ₃ (thd) ₃ (EtO) ₄ (<i>tert</i> Anorganische Und Allgemeine Chemie, 2011, 637, 2175-2182.	1.2	1
57	Dimethyl 3,3′-dimethoxybiphenyl-4,4′-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o449-o449.	0.2	1
58	Two new Cu(ii) and La(iii) 2D coordination polymers, synthesis and in situ structural analysis by X-ray diffraction. Dalton Transactions, 2016, 45, 12827-12834.	3.3	1
59	Ab initio structure solution and thermal stability evaluation of a new Ca(<scp>ii</scp>) 3D coordination polymer using synchrotron powder X-ray diffraction data. CrystEngComm, 2017, 19, 5857-5863.	2.6	1
60	Variability in the Formation and Framework Polymorphism of Metalâ€organic Frameworks based on Yttrium(III) and the Bifunctional Organic Linker 2,5â€Dihydroxyterephthalic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 15-25.	1.2	1
61	Methyl 5-iodo-2-methoxybenzoate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o462-o462.	0.2	0