Francisco J Real

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499242/publications.pdf

Version: 2024-02-01

50 2,749 30 50 papers citations h-index g-index

50 50 50 3190 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents. Separation and Purification Technology, 2018, 201, 41-50.	7.9	63
2	Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 727-734.	1.7	16
3	Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Separation and Purification Technology, 2017, 181, 123-131.	7.9	57
4	Assessment of the UV/Cl ₂ advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems. Environmental Technology (United Kingdom), 2017, 38, 2508-2516.	2.2	12
5	Oxidation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2â&phenoxyethanol by persulfate activated by <scp>UV</scp> irradiation. Journal of Chemical Technology and Biotechnology, 2016, 91, 1004-1011.	3.2	16
6	Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chemical Engineering Journal, 2016, 289, 48-58.	12.7	89
7	Influence of membrane, pH and water matrix properties on the retention of emerging contaminants by ultrafiltration and nanofiltration. Desalination and Water Treatment, 2016, 57, 11685-11698.	1.0	3
8	Comparison between chlorination and ozonation treatments for the elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in surface waters and secondary effluents. Journal of Chemical Technology and Biotechnology, 2015, 90, 1400-1407.	3.2	9
9	Elimination of Selected Emerging Contaminants by the Combination of Membrane Filtration and Chemical Oxidation Processes. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	42
10	Ozonation of benzotriazole and methylindole: Kinetic modeling, identification of intermediates and reaction mechanisms. Journal of Hazardous Materials, 2015, 282, 224-232.	12.4	34
11	Determination of the Reaction Rate Constants and Decomposition Mechanisms of Ozone with Two Model Emerging Contaminants: DEET and Nortriptyline. Industrial & Engineering Chemistry Research, 2013, 52, 17064-17073.	3.7	24
12	Photolysis of model emerging contaminants in ultra-pure water: Kinetics, by-products formation and degradation pathways. Water Research, 2013, 47, 870-880.	11.3	75
13	Chlorination and bromination kinetics of emerging contaminants in aqueous systems. Chemical Engineering Journal, 2013, 219, 43-50.	12.7	57
14	The Effectiveness of Single Oxidants and AOPs in the Degradation of Emerging Contaminants in Waters: A Comparison Study. Ozone: Science and Engineering, 2013, 35, 263-272.	2.5	13
15	Modeling the photodegradation of emerging contaminants in waters by UV radiation and UV/H2O2system. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 120-128.	1.7	15
16	Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 522-533.	1.7	29
17	Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chemical Engineering Journal, 2012, 210, 1-8.	12.7	104
18	Elimination of the Emerging Contaminants Amitriptyline Hydrochloride, Methyl Salicylate, and 2-Phenoxyethanol in Ultrapure Water and Secondary Effluents by Photolytic and Radicalary Pathways. Industrial & Degree Chemistry Research, 2012, 51, 16209-16215.	3.7	17

#	Article	IF	CITATIONS
19	Non-catalytic and catalytic wet air oxidation of pharmaceuticals in ultra-pure and natural waters. Chemical Engineering Research and Design, 2011, 89, 334-341.	5.6	31
20	Bromination of selected pharmaceuticals in water matrices. Chemosphere, 2011, 85, 1430-1437.	8.2	24
21	Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. Chemical Engineering Journal, 2011, 168, 1149-1156.	12.7	133
22	Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. Journal of Chemical Technology and Biotechnology, 2011, 86, 858-866.	3.2	56
23	Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 2010, 177, 390-398.	12.4	106
24	Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems. Chemical Engineering Journal, 2010, 160, 72-78.	12.7	36
25	Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Research, 2010, 44, 4158-4170.	11.3	128
26	Removal of selected pharmaceuticals in waters by photochemical processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1186-1195.	3.2	45
27	Combination of chemical oxidationâ€membrane filtration processes for the elimination of phenylâ€ureas in water matrices. Journal of Chemical Technology and Biotechnology, 2009, 84, 1883-1893.	3.2	10
28	Removal of phenyl-urea herbicides in natural waters by UF membranes: Permeate flux, analysis of resistances and rejection coefficients. Separation and Purification Technology, 2009, 65, 322-330.	7.9	26
29	Nanofiltration processes applied to the removal of phenyl-ureas in natural waters. Journal of Hazardous Materials, 2009, 165, 714-723.	12.4	12
30	Kinetics of the Chemical Oxidation of the Pharmaceuticals Primidone, Ketoprofen, and Diatrizoate in Ultrapure and Natural Waters. Industrial & Engineering Chemistry Research, 2009, 48, 3380-3388.	3.7	119
31	Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices. Chemosphere, 2009, 77, 53-59.	8.2	102
32	Removal of phenyl-urea herbicides in ultrapure water by ultrafiltration and nanofiltration processes. Water Research, 2009, 43, 267-276.	11.3	48
33	Elimination of organic matter present in wastewaters from the cork industry by membrane filtration. Journal of Chemical Technology and Biotechnology, 2008, 83, 309-316.	3.2	10
34	Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters. Journal of Hazardous Materials, 2008, 152, 373-380.	12.4	32
35	Chlorination of organophosphorus pesticides in natural waters. Journal of Hazardous Materials, 2008, 153, 320-328.	12.4	55
36	Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes. Water Research, 2008, 42, 3198-3206.	11.3	34

#	Article	IF	Citations
37	ELIMINATION OF BENZENE AND CHLOROBENZENES BY PHOTODEGRADATION AND OZONATION PROCESSES. Chemical Engineering Communications, 2007, 194, 811-827.	2.6	5
38	Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: Rate constants and model predictions. Water Research, 2007, 41, 4073-4084.	11.3	74
39	Kinetics of phenylurea herbicides oxidation by Fenton and photo-Fenton processes. Journal of Chemical Technology and Biotechnology, 2007, 82, 65-73.	3.2	42
40	Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. Journal of Chemical Technology and Biotechnology, 2007, 82, 214-222.	3.2	27
41	Removal of diazinon by various advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2007, 82, 566-574.	3.2	37
42	Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters. Journal of Hazardous Materials, 2006, 138, 278-287.	12,4	93
43	Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent and the photo-Fenton system. Journal of Hazardous Materials, 2005, 126, 31-39.	12.4	7 5
44	Oxidation of Esculetin, a Model Pollutant Present in Cork Processing Wastewaters, by Chemical Methods. Ozone: Science and Engineering, 2005, 27, 317-326.	2.5	5
45	Photosensitizer Method to Determine Rate Constants for the Reaction of Carbonate Radical with Organic Compounds. Environmental Science & Environmental	10.0	407
46	Removal of Phenolic Compounds in Water by Ultrafiltration Membrane Treatments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1585-1603.	1.7	26
47	Oxidation of Acetovanillone by Photochemical Processes and Hydroxyl Radicals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 2153-2169.	1.7	12
48	Oxidation of MCPA and 2,4-dby UV Radiation, Ozone, and the Combinations UV/H2O2and O3/H2O2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 393-409.	1.5	49
49	Kinetics of photodegradation and ozonation of pentachlorophenol. Chemosphere, 2003, 51, 651-662.	8.2	66
50	Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 2002, 89, 51-65.	12.4	149