Dejian Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3499191/publications.pdf

Version: 2024-02-01

36271 15716 16,936 219 51 125 citations g-index h-index papers 219 219 219 19037 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enzymatic treatment, unfermented and fermented fruit-based products: current state of knowledge. Critical Reviews in Food Science and Nutrition, 2022, 62, 1890-1911.	5.4	17
2	Understanding the mechanisms of whey protein isolate mitigating the digestibility of corn starch by in vitro simulated digestion. Food Hydrocolloids, 2022, 124, 107211.	5.6	31
3	The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chemistry, 2022, 372, 131334.	4.2	46
4	Selenium Speciation in Selenium-Enriched Plant Foods. Food Analytical Methods, 2022, 15, 1377-1389.	1.3	10
5	Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annual Review of Food Science and Technology, 2022, 13, 287-313.	5.1	10
6	Surface enhanced FRET for sensitive and selective detection of doxycycline using organosilicon nanodots as donors. Analytica Chimica Acta, 2022, 1197, 339530.	2.6	15
7	Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Analytical and Bioanalytical Chemistry, 2022, 414, 2651-2660.	1.9	15
8	Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus) Tj ETQq0 0	0 rgBT /Ο\	verlock 10 Tf 5
9	Physicochemical and functional characterisation of pectin from margarita sweet potato leaves. Food Chemistry, 2022, 385, 132684.	4.2	4
10	Resin glycosides in aerial parts of <i>lpomoea batatas</i> are potent lipase inhibitors: potential upcycling of sweet potato by-products to combat obesity. Food and Function, 2022, 13, 5353-5364.	2.1	3
11	Quantitative Determination of Ethylene Using a Smartphone-Based Optical Fiber Sensor (SOFS) Coupled with Pyrene-Tagged Grubbs Catalyst. Biosensors, 2022, 12, 316.	2.3	1
12	Functional composite microbeads for cell-based meat culture: effect of animal gelatin coating on cell proliferation and differentiation. Journal Physics D: Applied Physics, 2022, 55, 345401.	1.3	6
13	Structure–Activity Relationship (SAR) of Flavones on Their Anti-Inflammatory Activity in Murine Macrophages in Culture through the NF-ήB Pathway and c-Src Kinase Receptor. Journal of Agricultural and Food Chemistry, 2022, 70, 8788-8798.	2.4	5
14	Highly Efficient Regioselective Acylation of Dihydromyricetin Catalyzed by Lipase in Nonaqueous Solvents. Processes, 2022, 10, 1368.	1.3	2
15	Three-Dimensional Quantitative Structure and Activity Relationship of Flavones on Their Hypochlorite Scavenging Capacity. Journal of Agricultural and Food Chemistry, 2022, 70, 8799-8807.	2.4	3
16	Methyl position affect the fluorescence performance of HBT derivatives for the detection of hypochlorite under alkaline condition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121583.	2.0	5
17	Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend. LWT - Food Science and Technology, 2021, 137, 110398.	2.5	24
18	Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocolloids, 2021, 114, 106544.	5.6	59

#	Article	IF	CITATIONS
19	Interrelation of cholesterolâ€lowering, antioxidant activity and DNA damage protection to the different solvent extracts of mulberry (Morus alba L.). Journal of Food Processing and Preservation, 2021, 45, .	0.9	2
20	Formation, structural characteristics and physicochemical properties of beeswax oleogels prepared with tea polyphenol loaded gelators. Food and Function, 2021, 12, 1662-1671.	2.1	10
21	Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an <i>In Vitro</i> Tumor Model. ACS Applied Bio Materials, 2021, 4, 1381-1394.	2.3	14
22	Noninvasive <i>In Vivo</i> Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Applied Bio Materials, 2021, 4, 3189-3202.	2.3	11
23	Facile mitochondria localized fluorescent probe for viscosity detection in living cells. Talanta, 2021, 225, 121996.	2.9	30
24	Anti-Inflammation Activity of Flavones and Their Structure–Activity Relationship. Journal of Agricultural and Food Chemistry, 2021, 69, 7285-7302.	2.4	50
25	Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape (Brassica napus L.) bee pollen. LWT - Food Science and Technology, 2021, 147, 111502.	2.5	12
26	Inhibition Effect of Extract of Psychotria viridiflora Stem on α-Amylase and α-Glucosidase and Its Application in Lowering the Digestibility of Noodles. Frontiers in Nutrition, 2021, 8, 701114.	1.6	2
27	Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydrate Polymers, 2021, 268, 118264.	5.1	18
28	Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chemistry, 2021, 357, 129904.	4.2	27
29	Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 2021, 358, 129749.	4.2	48
30	The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chemistry, 2021, 364, 130424.	4.2	4
31	Three-Dimensional RAW264.7 Cell Model on Electrohydrodynamic Printed Poly(ε-Caprolactone) Scaffolds for In Vitro Study of Anti-Inflammatory Compounds. ACS Applied Bio Materials, 2021, 4, 7967-7978.	2.3	4
32	Modulating Structure and Properties of Glutinous Rice Flour and Its Dumpling Products by Annealing. Processes, 2021, 9, 2248.	1.3	2
33	Analyzing Cell-Scaffold Interaction through Unsupervised 3D Nuclei Segmentation. International Journal of Bioprinting, 2021, 8, 495.	1.7	6
34	Pyrenediones as versatile photocatalysts for oxygenation reactions with <i>in situ</i> generation of hydrogen peroxide under visible light. Green Chemistry, 2020, 22, 22-27.	4.6	25
35	Structure and physiochemical characteristics of whey protein isolate conjugated with xylose through Maillard reaction at different degrees. Arabian Journal of Chemistry, 2020, 13, 8051-8059.	2.3	28
36	Generating Nanotopography on PCL Microfiber Surface for Better Cell-Scaffold Interactions. Procedia Manufacturing, 2020, 48, 619-624.	1.9	3

#	Article	IF	CITATIONS
37	Room temperature cupric halides mediated olefin alkoxylation of BODIPYs with methanol: mechanisms and scope. Organic and Biomolecular Chemistry, 2020, 18, 7916-7921.	1.5	4
38	Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacological Research, 2020, 159, 104961.	3.1	18
39	Characterization and bioactivity of proanthocyanidins during Malay cherry (Lepisanthes alata) fruit ripening. Food Bioscience, 2020, 36, 100617.	2.0	11
40	Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet–Fed Mice through Increased Thermogenesis. Journal of Nutrition, 2020, 150, 2131-2138.	1.3	15
41	Moringin and Its Structural Analogues as Slow H2S Donors: Their Mechanisms and Bioactivity. Journal of Agricultural and Food Chemistry, 2020, 68, 7235-7245.	2.4	7
42	Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydrate Polymers, 2020, 247, 116667.	5.1	64
43	Using Plant Proteins to Develop Composite Scaffolds for Cell Culture Applications. International Journal of Bioprinting, 2020, 7, 298.	1.7	11
44	Electrohydrodynamic Printing Process Monitoring for Diverse Microstructure Bioscaffold Fabrication. , 2020, , .		0
45	Isothiocyanates as H ₂ S Donors Triggered by Cysteine: Reaction Mechanism and Structure and Activity Relationship. Organic Letters, 2019, 21, 5977-5980.	2.4	45
46	Development of a Fluorescent Probe for Measurement of Singlet Oxygen Scavenging Activity of Flavonoids. Journal of Agricultural and Food Chemistry, 2019, 67, 10726-10733.	2.4	10
47	Non-Linear Quantitative Structure–Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants. International Journal of Molecular Sciences, 2019, 20, 2328.	1.8	29
48	Dietary Flavonoids Scavenge Hypochlorous Acid via Chlorination on A- and C-Rings as Primary Reaction Sites: Structure and Reactivity Relationship. Journal of Agricultural and Food Chemistry, 2019, 67, 4346-4354.	2.4	7
49	Deciphering the nutritive and antioxidant properties of Malay cherry (<i>Lepisanthes alata</i>) fruit dominated by ripening effects. RSC Advances, 2019, 9, 38065-38076.	1.7	6
50	Microscale scaffolds with diverse morphology via electrohydrodynamic jetting for in vitro cell culture application. Biomedical Physics and Engineering Express, 2019, 5, 025011.	0.6	4
51	Antioxidants in sprouts of grains. , 2019, , 55-68.		4
52	Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst. Journal of Agricultural and Food Chemistry, 2019, 67, 507-513.	2.4	42
53	A smartphone-based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants. Sensors and Actuators B: Chemical, 2019, 283, 524-531.	4.0	16
54	Characterizations of the endogenous starch hydrolase inhibitors in acorns of Quercus fabri Hance. Food Chemistry, 2018, 258, 111-117.	4.2	13

#	Article	IF	CITATIONS
55	Palladacycle Based Fluorescence Turn-On Probe for Sensitive Detection of Carbon Monoxide. ACS Sensors, 2018, 3, 285-289.	4.0	87
56	Evaluation of Necrosis Avidity and Potential for Rapid Imaging of Necrotic Myocardium of Radioiodinated Hypocrellins. Molecular Imaging and Biology, 2018, 20, 551-561.	1.3	3
57	A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators B: Chemical, 2018, 266, 645-654.	4.0	23
58	Photo-induced C–H bond activation of <i>N</i> , <i>N</i> ′-dialkylethylenediamine upon aza-Michael addition to 1,8-pyrenedione: facile synthesis of fluorescent pyrene derivatives. Organic Chemistry Frontiers, 2018, 5, 1679-1683.	2.3	8
59	Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 2018, 220, 1-11.	2.7	243
60	131I-Evans blue: evaluation of necrosis targeting property and preliminary assessment of the mechanism in animal models. Acta Pharmaceutica Sinica B, 2018, 8, 390-400.	5.7	3
61	Selective detection and quantification of tryptophan and cysteine with pyrenedione as a turn-on fluorescent probe. Sensors and Actuators B: Chemical, 2018, 259, 768-774.	4.0	33
62	Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Current Medical Research and Opinion, 2018, 34, 123-129.	0.9	47
63	Durian Fruits Discovered as Superior Folate Sources. Frontiers in Nutrition, 2018, 5, 114.	1.6	18
64	Synthesis and Biological Evaluation of Rhein-Based MRI Contrast Agents for in Vivo Visualization of Necrosis. Analytical Chemistry, 2018, 90, 13249-13256.	3.2	14
65	Singlet oxygen probes made simple: Anthracenylmethyl substituted fluorophores as reaction-based probes for detection and imaging of cellular 102. Sensors and Actuators B: Chemical, 2018, 271, 346-352.	4.0	23
66	Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18551-18559.	4.0	60
67	Preclinical Evaluation of Radioiodinated Hoechst 33258 for Early Prediction of Tumor Response to Treatment of Vascular-Disrupting Agents. Contrast Media and Molecular Imaging, 2018, 2018, 1-9.	0.4	5
68	3D Printing of Food., 2018,,.		2
69	Dietary Antioxidants and Health Promotion. Antioxidants, 2018, 7, 9.	2.2	60
70	Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules, 2018, 23, 1139.	1.7	90
71	The Possible Reduction Mechanism of Volatile Sulfur Compounds during Durian Wine Fermentation Verified in Modified Buffers. Molecules, 2018, 23, 1456.	1.7	11
72	3D Food Printing: Perspectives., 2018,, 725-755.		34

#	Article	IF	CITATIONS
73	Data on the effect of boiling on the organosulfides and the hydrogen sulfide-releasing activity of garlic. Data in Brief, 2017, 10, 221-226.	0.5	3
74	Organosulphide profile and hydrogen sulphide-releasing activity of garlic fermented by Lactobacillus plantarum. Journal of Functional Foods, 2017, 30, 254-259.	1.6	4
75	Mitigating the in vitro enzymatic digestibility of noodles by aqueous extracts of Malay cherry leaves. Food Chemistry, 2017, 232, 571-578.	4.2	14
76	Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2017, 101, 3005-3014.	1.7	24
77	The effects of co- and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Applied Microbiology and Biotechnology, 2017, 101, 7853-7863.	1.7	20
78	Synthesis and characterization of binaphthalene-2,2 $\hat{a}\in^2$ -diamine-functionalized gold nanoparticles. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	2
79	Effects of S-allyl glutathione disulphide and vinyl-dithiin isomers from garlic on the chronological lifespan of Saccharomyces cerevisiae. Journal of Functional Foods, 2017, 37, 650-657.	1.6	1
80	Cyclic polysulphide 1,2,4-trithiolane from stinky bean (Parkia speciosa seeds) is a slow releasing hydrogen sulphide (H2S) donor. Journal of Functional Foods, 2017, 35, 197-204.	1.6	14
81	Physico-chemical parameters and proanthocyanidin profiles of cranberries cultivated in New Zealand. Journal of Food Composition and Analysis, 2017, 63, 1-7.	1.9	14
82	Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic. Food Chemistry, 2017, 221, 1867-1873.	4.2	48
83	Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Food Chemistry, 2017, 215, 209-218.	4.2	23
84	The New Synthetic H2S-Releasing SDSS Protects MC3T3-E1 Osteoblasts against H2O2-Induced Apoptosis by Suppressing Oxidative Stress, Inhibiting MAPKs, and Activating the PI3K/Akt Pathway. Frontiers in Pharmacology, 2017, 08, 07.	1.6	36
85	Impact of Maturity of Malay Cherry (Lepisanthes alata) Leaves on the Inhibitory Activity of Starch Hydrolases. Molecules, 2017, 22, 873.	1.7	1
86	Ameliorative effects of $\langle b \rangle \hat{l} \pm \langle b \rangle$ -lipoic acid on high-fat diet-induced oxidative stress and glucose uptake impairment of T cells. Free Radical Research, 2016, 50, 1106-1115.	1.5	7
87	Assessment of volatile and nonâ€volatile compounds in durian wines fermented with four commercial nonâ€ <i>>Saccharomyces</i> yeasts. Journal of the Science of Food and Agriculture, 2016, 96, 1511-1521.	1.7	54
88	Reversible Fluorescent Probe for Selective Detection and Cell Imaging of Oxidative Stress Indicator Bisulfite. Analytical Chemistry, 2016, 88, 4426-4431.	3.2	176
89	Investigation of human flap structure-specific endonuclease 1 (FEN1) activity on primer-template models and exploration of a substrate-based FEN1 inhibitor. Bioorganic and Medicinal Chemistry, 2016, 24, 1988-1992.	1.4	13
90	Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Applied Microbiology and Biotechnology, 2016, 100, 8877-8888.	1.7	23

#	Article	IF	Citations
91	A cyanine-based near-infrared fluorescent probe for highly sensitive and selective detection of hypochlorous acid and bioimaging. Talanta, 2016, 161, 592-598.	2.9	31
92	Lepisanthes alata (Malay cherry) leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. Journal of Functional Foods, 2016, 25, 568-578.	1.6	29
93	Improved synthesis dimethylhomoecoerdianthrone (HOCD) and its functionalization through facile amination reactions. Dyes and Pigments, 2016, 130, 154-161.	2.0	7
94	Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. Journal of Drug Targeting, 2016, 24, 566-577.	2.1	5
95	Odor-Specific Loss of Smell Sensitivity with Age as Revealed by the Specific Sensitivity Test. Chemical Senses, 2016, 41, 487-495.	1.1	21
96	Oligomeric proanthocyanidins are the active compounds in Abelmoschus esculentus Moench for its α-amylase and α-glucosidase inhibition activity. Journal of Functional Foods, 2016, 20, 463-471.	1.6	37
97	Organosulfide profile and hydrogen sulfide-releasing capacity of stinky bean (Parkia speciosa) oil: Effects of pH and extraction methods. Food Chemistry, 2016, 190, 1123-1129.	4.2	23
98	Combretastatin-A4 phosphate improves the distribution and antitumor efficacy of albumin-bound paclitaxel in W256 breast carcinoma model. Oncotarget, 2016, 7, 58133-58141.	0.8	9
99	An Alternative Method for Evaluating Stabilities of DNA Hairpin Structures. Bulletin of the Chemical Society of Japan, 2015, 88, 1314-1316.	2.0	3
100	Effects of cofermentation and sequential inoculation of <i><scp>S</scp>accharomyces bayanus</i> and <i><scp>T</scp>orulaspora delbruckii</i> on durian wine composition. International Journal of Food Science and Technology, 2015, 50, 2653-2663.	1.3	24
101	Chemical and Biochemical Mechanisms Underlying the Cardioprotective Roles of Dietary Organopolysulfides. Frontiers in Nutrition, 2015, 2, 1.	1.6	64
102	Phenolic group on A-ring is key for dracoflavan B as a selective noncompetitive inhibitor of \hat{l} ±-amylase. Bioorganic and Medicinal Chemistry, 2015, 23, 7641-7649.	1.4	10
103	Evaluation of Hypericin: Effect of Aggregation on Targeting Biodistribution. Journal of Pharmaceutical Sciences, 2015, 104, 215-222.	1.6	34
104	Visualizing Gaseous Nitrogen Dioxide by Ratiometric Fluorescence of Carbon Nanodots–Quantum Dots Hybrid. Analytical Chemistry, 2015, 87, 2087-2093.	3.2	132
105	Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model:in vivomagnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy. Journal of Drug Targeting, 2015, 23, 436-443.	2.1	8
106	Biodistribution and anti-tumor efficacy of intratumorally injected necrosis-avid theranostic agent radioiodinated hypericin in rodent tumor models. Journal of Drug Targeting, 2015, 23, 371-379.	2.1	11
107	Manipulating the Surface Chemistry of Quantum Dots for Sensitive Ratiometric Fluorescence Detection of Sulfur Dioxide. Langmuir, 2015, 31, 8667-8671.	1.6	30
108	Discovery of New H \langle sub \rangle 2 \langle /sub \rangle S Releasing Phosphordithioates and 2,3-Dihydro-2-phenyl-2-sulfanylenebenzo[\langle i \rangle d \langle i \rangle][1,3,2]oxazaphospholes with Improved Antiproliferative Activity. Journal of Medicinal Chemistry, 2015, 58, 6456-6480.	2.9	71

#	Article	IF	Citations
109	Evaluation of a metalloporphyrin (THPPMnCl) for necrosis-affinity in rat models of necrosis. Journal of Drug Targeting, 2015, 23, 926-935.	2.1	1
110	An Overview of 3D Printing Technologies for Food Fabrication. Food and Bioprocess Technology, 2015, 8, 1605-1615.	2.6	352
111	PD806. Anti-Cancer Drugs, 2015, 26, 148-159.	0.7	1
112	Fluorescence Signaling of Hydrogen Sulfide in Broad pH Range Using a Copper Complex Based on BINOL–Benzimidazole Ligands. Inorganic Chemistry, 2015, 54, 3766-3772.	1.9	68
113	Radiopharmaceutical evaluation of sup>131 / sup>I-protohypericin as a necrosis avid compound. Journal of Drug Targeting, 2015, 23, 417-426.	2.1	14
114	Hydrogen sulphide (H2S) releasing capacity of essential oils isolated from organosulphur rich fruits and vegetables. Journal of Functional Foods, 2015, 14, 634-640.	1.6	34
115	Experimental evaluation of radioiodinated sennoside B as a necrosis-avid tracer agent. Journal of Drug Targeting, 2015, 23, 180-190.	2.1	8
116	Diallyl Trisulfide Is a Fast H ₂ S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Organic Letters, 2015, 17, 4196-4199.	2.4	145
117	Organosulphide profile and hydrogen sulphide-releasing capacity of garlic (Allium sativum L.) scape oil: Effects of pH and cooking. Journal of Functional Foods, 2015, 17, 410-421.	1.6	15
118	Combretastatin A4 phosphate treatment induces vasculogenic mimicry formation of W256 breast carcinoma tumor in vitro and in vivo. Tumor Biology, 2015, 36, 8499-8510.	0.8	13
119	Exploring diagnostic potentials of radioiodinated sennidin A in rat model of reperfused myocardial infarction. International Journal of Pharmaceutics, 2015, 495, 31-40.	2.6	9
120	Dietary organosulfur compounds from garlic and cruciferous vegetables as potent hypochlorite scavengers. Journal of Functional Foods, 2015, 18, 986-993.	1.6	9
121	Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget, 2015, 6, 26400-26410.	0.8	12
122	Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 8617-8628.	1.7	20
123	Highly Selective and Sensitive Nearâ€Infraredâ€Fluorescent Probes for the Detection of Cellular Hydrogen Sulfide and the Imaging of H ₂ S in Mice. Chemistry - an Asian Journal, 2014, 9, 3604-3611.	1.7	32
124	An oxidative cleavage-based ratiometric fluorescent probe for hypochlorous acid detection and imaging. RSC Advances, 2014, 4, 59961-59964.	1.7	20
125	Hormesis of Glyceollin I, an Induced Phytoalexin from Soybean, on Budding Yeast Chronological Lifespan Extension. Molecules, 2014, 19, 568-580.	1.7	17
126	Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil. Food Chemistry, 2014, 145, 796-801.	4.2	17

#	Article	lF	Citations
127	Oxidative Cleavage-Based Near-Infrared Fluorescent Probe for Hypochlorous Acid Detection and Myeloperoxidase Activity Evaluation. Analytical Chemistry, 2014, 86, 671-677.	3.2	208
128	Assessment of the Degree of Interference of Polyphenolic Compounds on Glucose Oxidation/Peroxidase Assay. Journal of Agricultural and Food Chemistry, 2014, 62, 4571-4576.	2.4	11
129	Nitrogen Dioxide Absorbance Capacity of Flavanols Quantified by a NO ₂ -Selective Fluorescent Probe. Journal of Agricultural and Food Chemistry, 2014, 62, 5253-5258.	2.4	11
130	Determination of Gaseous Sulfur Dioxide and Its Derivatives via Fluorescence Enhancement Based on Cyanine Dye Functionalized Carbon Nanodots. Analytical Chemistry, 2014, 86, 9381-9385.	3.2	86
131	Hydrogen sulfide donors in research and drug development. MedChemComm, 2014, 5, 557-570.	3.5	84
132	Fluorescence Turn-On Detection of Gaseous Nitric Oxide Using Ferric Dithiocarbamate Complex Functionalized Quantum Dots. Analytical Chemistry, 2014, 86, 5628-5632.	3.2	28
133	Effect of Processing Conditions on the Organosulfides of Shallot (<i>Allium cepa</i> l i> L. Aggregatum) Tj ETQq1 1	0.784314 2.4	rgBT /Overlo
134	Inhibiting enzymatic starch digestion by hydrolyzable tannins isolated from Eugenia jambolana. LWT - Food Science and Technology, 2014, 59, 389-395.	2.5	26
135	Chemical and enzymatic synthesis of a library of 2-phenethyl esters and their sensory attributes. Food Chemistry, 2014, 154, 205-210.	4.2	20
136	Hypoglycemic Activities of Commonly-Used Traditional Chinese Herbs. The American Journal of Chinese Medicine, 2013, 41, 849-864.	1.5	16
137	Inhibiting enzymatic starch digestion by the phenolic compound diboside A: A mechanistic and in silico study. Food Research International, 2013, 54, 595-600.	2.9	21
138	New arahypins isolated from fungal-challenged peanut seeds and their glucose uptake-stimulatory activity in 3T3-L1 adipocytes. Phytochemistry Letters, 2013, 6, 123-127.	0.6	8
139	Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide. Journal of the American Chemical Society, 2013, 135, 5312-5315.	6.6	64
140	New Stilbenoids Isolated from Fungus-Challenged Black Skin Peanut Seeds and Their Adipogenesis Inhibitory Activity in 3T3-L1 Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 4155-4161.	2.4	17
141	Determination of Total Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC) Using Fluorescein as the Fluorescence Probe: First Action 2012.23. Journal of AOAC INTERNATIONAL, 2013, 96, 1372-1376.	0.7	116
142	Starch Hydrolase Inhibitors from Edible Plants. Advances in Food and Nutrition Research, 2013, 70, 103-136.	1.5	23
143	Necrosis affinity evaluation of ^{131 < /sup>I-hypericin in a rat model of induced necrosis. Journal of Drug Targeting, 2013, 21, 604-610.}	2.1	19
144	Dietary Restriction Depends on Nutrient Composition to Extend Chronological Lifespan in Budding Yeast Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e64448.	1.1	43

#	Article	IF	CITATIONS
145	Tea and Starch Digestibility. , 2013, , 457-467.		1
146	Antioxidant Evaluation and Antioxidant Activity Mechanisms., 2013,, 323-343.		1
147	Characterization of Proanthocyanidins in Stems of Polygonum multiflorum Thunb as Strong Starch Hydrolase Inhibitors. Molecules, 2013, 18, 2255-2265.	1.7	26
148	Antioxidant Activity and Proanthocyanidin Profile of Selliguea feei Rhizomes. Molecules, 2013, 18, 4282-4292.	1.7	16
149	Secondary Metabolites in Durian Seeds: Oligomeric Proanthocyanidins. Molecules, 2013, 18, 14172-14185.	1.7	19
150	Independent and Additive Effects of Glutamic Acid and Methionine on Yeast Longevity. PLoS ONE, 2013, 8, e79319.	1.1	72
151	Germination Dramatically Increases Isoflavonoid Content and Diversity in Chickpea (<i>Cicer) Tj ETQq1 1 0.7843</i>	14 rgBT /0 2.4	Overlock 10
152	Profiles and α-Amylase Inhibition Activity of Proanthocyanidins in Unripe Manilkara zapota (Chiku). Journal of Agricultural and Food Chemistry, 2012, 60, 3098-3104.	2.4	50
153	Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocolloids, 2012, 26, 365-369.	5.6	42
154	Selenium Blue-α and -β: turning on the fluorescence of a pyrenyl fluorophore via oxidative cleavage of the Se–C bond by reactive oxygen species. Tetrahedron Letters, 2012, 53, 3843-3846.	0.7	16
155	Food Grade Fungal Stress on Germinating Peanut Seeds Induced Phytoalexins and Enhanced Polyphenolic Antioxidants. Journal of Agricultural and Food Chemistry, 2011, 59, 5993-6003.	2.4	41
156	Air Oxidation of HS–Catalyzed by An Mixed-Valence Diruthenium Complex, an Near-IR Probe for HS–Detection. Inorganic Chemistry, 2011, 50, 7379-7381.	1.9	8
157	A High-Throughput Assay for Quantification of Starch Hydrolase Inhibition Based on Turbidity Measurement. Journal of Agricultural and Food Chemistry, 2011, 59, 9756-9762.	2.4	50
158	Baicalin upregulates the genetic expression of antioxidant enzymes in Type-2 diabetic Goto-Kakizaki rats. Life Sciences, 2011, 88, 1016-1025.	2.0	44
159	Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 2011, 133, 598-607.	2.0	93
160	Hydroethidine as a probe for measuring superoxide formation rates during air oxidation of myricetin and quercetin. Tetrahedron Letters, 2011, 52, 5384-5387.	0.7	5
161	A high throughput screening assay for determination of chronological lifespan of yeast. Experimental Gerontology, 2011, 46, 915-922.	1.2	18
162	A Dual-targeting Anticancer Approach: Soil and Seed Principle. Radiology, 2011, 260, 799-807.	3.6	81

#	Article	IF	Citations
163	Polyphenolic antioxidant profiles of yellow camellia. Food Chemistry, 2011, 129, 351-357.	4.2	56
164	Sustainability from agricultural waste: chiral ligands from oligomeric proanthocyanidins via acid-mediated depolymerization. Tetrahedron Letters, 2010, 51, 6322-6324.	0.7	12
165	Antioxidant activity and profiles of common vegetables in Singapore. Food Chemistry, 2010, 120, 993-1003.	4.2	152
166	Antioxidant activity and profiles of common fruits in Singapore. Food Chemistry, 2010, 123, 77-84.	4.2	200
167	THE ROLES OF PHOTOLUMINESCENT QUANTUM DOTS IN GENERATION OR DETECTION OF REACTIVE OXYGEN SPECIES: CULPRITS OR DETECTIVES?. Cosmos, 2010, 06, 149-158.	0.4	0
168	Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovascular Research, 2010, 88, 482-491.	1.8	118
169	Evaluation of Different Teas against Starch Digestibility by Mammalian Glycosidases. Journal of Agricultural and Food Chemistry, 2010, 58, 148-154.	2.4	158
170	The Effects of Fungal Stress on the Antioxidant Contents of Black Soybeans under Germination. Journal of Agricultural and Food Chemistry, 2010, 58, 12491-12496.	2.4	10
171	Unexpected Reactivity of $\langle i \rangle o \langle j \rangle$ -Nitrosophenol with RCH $\langle sub \rangle 2 \langle j sub \rangle$ Br: Câ^'H Bond Cleavage and Annulation to Benzoxazoles and Benzoxazines (R = Alkynyl). Organic Letters, 2010, 12, 736-738.	2.4	10
172	Novel sulfation of curdlan assisted by ultrasonication. International Journal of Biological Macromolecules, 2010, 46, 385-388.	3.6	20
173	CdSe-ZnS Quantum Dots for Selective and Sensitive Detection and Quantification of Hypochlorite. Analytical Chemistry, 2010, 82, 9775-9781.	3.2	124
174	Salen Derivatives Functionalized CdSe–ZnS Quantum Dots as Fluorescent Probes for Selective Cu(II) and Fe(II) Sensing. Nanoscience and Nanotechnology Letters, 2010, 2, 208-212.	0.4	6
175	Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability. Nanotechnology, 2009, 20, 425102.	1.3	17
176	Baicalin reduces mitochondrial damage in streptozotocinâ€induced diabetic Wistar rats. Diabetes/Metabolism Research and Reviews, 2009, 25, 671-677.	1.7	52
177	One-pot depolymerizative extraction of proanthocyanidins from mangosteen pericarps. Food Chemistry, 2009, 114, 874-880.	4.2	18
178	Quantification of Antioxidant Capacity in a Microemulsion System: Synergistic Effects of Chlorogenic Acid with α-Tocopherol. Journal of Agricultural and Food Chemistry, 2009, 57, 3409-3414.	2.4	28
179	Baicalin Improves Antioxidant Status of Streptozotocin-Induced Diabetic Wistar Rats. Journal of Agricultural and Food Chemistry, 2009, 57, 4096-4102.	2.4	41
180	Nitric Oxide Switches on the Photoluminescence of Molecularly Engineered Quantum Dots. Journal of the American Chemical Society, 2009, 131, 11692-11694.	6.6	94

#	Article	IF	CITATIONS
181	Novel High-Throughput Assay for Antioxidant Capacity against Superoxide Anion. Journal of Agricultural and Food Chemistry, 2009, 57, 2661-2667.	2.4	35
182	Peroxyl Radical Scavenging Capacity, Polyphenolics, and Lipophilic Antioxidant Profiles of Mulberry Fruits Cultivated in Southern China. Journal of Agricultural and Food Chemistry, 2008, 56, 9410-9416.	2.4	95
183	Novel Process of Fermenting Black Soybean [Glycine max (L.) Merrill] Yogurt with Dramatically Reduced Flatulence-Causing Oligosaccharides but Enriched Soy Phytoalexins. Journal of Agricultural and Food Chemistry, 2008, 56, 10078-10084.	2.4	21
184	Characterization of the Anti-Diabetic and Antioxidant Effects of <i>Rehmannia Glutinosa</i> in Streptozotocin-Induced Diabetic Wistar Rats. The American Journal of Chinese Medicine, 2008, 36, 1083-1104.	1.5	36
185	<i>Scutellaria baicalensis</i> Enhances the Anti-Diabetic Activity of Metformin in Streptozotocin-Induced Diabetic Wistar Rats. The American Journal of Chinese Medicine, 2008, 36, 517-540.	1.5	84
186	Fungal-Stressed Germination of Black Soybeans Leads to Generation of Oxooctadecadienoic Acids in Addition to Glyceollins. Journal of Agricultural and Food Chemistry, 2007, 55, 8589-8595.	2.4	36
187	Assay-guided Fractionation Study of \hat{l}_{\pm} -Amylase Inhibitors from <i>Garcinia mangostana</i> Pericarp. Journal of Agricultural and Food Chemistry, 2007, 55, 9805-9810.	2.4	36
188	Oligomeric Proanthocyanidins from Mangosteen Pericarps. Journal of Agricultural and Food Chemistry, 2007, 55, 7689-7694.	2.4	118
189	CdSe Nanocrystals as Hydroperoxide Scavengers: A New Approach to Highly Sensitive Quantification of Lipid Hydroperoxides. Small, 2007, 3, 290-293.	5.2	30
190	Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry, Euterpe oleraceae Mart. (Acai). Journal of Agricultural and Food Chemistry, 2006, 54, 8598-8603.	2.4	305
191	Antioxidant Capacity and Other Bioactivities of the Freeze-Dried Amazonian Palm Berry, Euterpe oleraceae Mart. (Acai). Journal of Agricultural and Food Chemistry, 2006, 54, 8604-8610.	2.4	279
192	High-Throughput Quantitation of Peroxyl Radical Scavenging Capacity in Bulk Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 5299-5305.	2.4	33
193	Red Grapefruit Positively Influences Serum Triglyceride Level in Patients Suffering from Coronary Atherosclerosis:Â Studies in Vitro and in Humans. Journal of Agricultural and Food Chemistry, 2006, 54, 1887-1892.	2.4	110
194	Fluorescent Approach to Quantitation of Reactive Oxygen Species in Mainstream Cigarette Smoke. Analytical Chemistry, 2006, 78, 3097-3103.	3.2	25
195	Cleavage of F–C(sp2) bonds by MHR(CO)(PtBu2Me)2 (M=Os and Ru; R=H, CH3 or Aryl): Product dependence on M and R. Polyhedron, 2006, 25, 459-468.	1.0	36
196	The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 2005, 53, 1841-1856.	2.4	4,505
197	Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity) Tj ETQq1 1 0.78 Chemistry, 2003, 51, 3273-3279.	4314 rgBT 2.4	7/Overlock 10 1,220
198	Facile C(sp2)/O2CR bond cleavage by Ru or Os. New Journal of Chemistry, 2003, 27, 1451-1462.	1.4	22

#	Article	IF	CITATIONS
199	When east meets west: the relationship between yinâ€yang and antioxidationâ€oxidation. FASEB Journal, 2003, 17, 127-129.	0.2	106
200	Antioxidant Activities of Natural Vitamin E Formulations. Journal of Nutritional Science and Vitaminology, 2003, 49, 217-220.	0.2	17
201	Novel Fluorometric Assay for Hydroxyl Radical Prevention Capacity Using Fluorescein as the Probe. Journal of Agricultural and Food Chemistry, 2002, 50, 2772-2777.	2.4	297
202	High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. Journal of Agricultural and Food Chemistry, 2002, 50, 4437-4444.	2.4	1,242
203	Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated \hat{l}^2 -Cyclodextrin as the Solubility Enhancer. Journal of Agricultural and Food Chemistry, 2002, 50, 1815-1821.	2.4	458
204	Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. Journal of Agricultural and Food Chemistry, 2002, 50, 3122-3128.	2.4	998
205	Facile and Reversible Cleavage of Câ^'F Bonds. Contrasting Thermodynamic Selectivity for RuCF2H vs FOsCFH. Journal of the American Chemical Society, 2000, 122, 8916-8931.	6.6	99
206	Structural Distortions inmer- $M(H)3(NO)L2(M = Ru, Os)$ and Their Influence on Intramolecular Fluxionality and Quantum Exchange Coupling. Inorganic Chemistry, 2000, 39, 1919-1932.	1.9	23
207	16-Electron Ruthenium(0) Complexes Containing the Ru(NO)L2+Substructure:Â Planar RuCH3(NO)L2vs Sawhorse [Ru(NO)(CC(SiMe3)2)L2]+. Organometallics, 2000, 19, 1967-1972.	1.1	28
208	A 14-Electron Ruthenium(II) Hydride, [RuH(CO)(PtBu2Me)2]BArâ€~4(Arâ€~ = 3,5-(C6H3)(CF3)2): Synthesis, Structure, and Reactivity toward Alkenes and Oxygen Ligands. Organometallics, 2000, 19, 2281-2290.	1.1	59
209	Silyl Migration of Me3SiCCPh Coordinated to [RuH(CO)(PtBu2Me)2]BArâ€~4Can Be Reversed: Synthesis and Structure of [Ru(CHC(SiMe3)(Ph))(CO)(PtBu2Me)2]BArâ€~4. Journal of the American Chemical Society, 1999, 121, 10318-10322.	6.6	26
210	14-Electron Four-Coordinate Ru(II) Carbyl Complexes and Their Five-Coordinate Precursors:Â Synthesis, Double Agostic Interactions, and Reactivity. Journal of the American Chemical Society, 1999, 121, 8087-8097.	6.6	109
211	Mechanistic and thermodynamic aspects of methylene transfer from CH2N2 to MHCl(CO)L2 (M=Ru, Os;) Tj ETQq Journal of Chemistry, 1998, 22, 1023-1025.	1 1 0.7843 1.4	314 rgBT 24
212	CO-Induced C(sp2)/C(sp) Coupling on Ru and Os:Â A Comparative Study. Organometallics, 1998, 17, 4700-4706.	1.1	58
213	New Entries to and New Reactions of Fluorocarbon Ligands. Journal of the American Chemical Society, 1997, 119, 3185-3186.	6.6	65
214	RuX(CO)(NO)L2and Ru(CO)(NO)L2+:Â Ru(0) or Ru(II) or In Between?. Journal of the American Chemical Society, 1997, 119, 8642-8651.	6.6	77
215	The First η2-CH2Cl2 Adduct of Ru(II):[RuH(η2-CH2Cl2)(CO)(PtBu2Me)2][BArâ€~4] (Arâ€~ = 3,5-C6H3(CF3)2) and RuH(CO)(PtBu2Me)2+ Precursor. Journal of the American Chemical Society, 1997, 119, 7398-7399.	lts 6.6	86
216	[Ru(Ph)(CO)(PtBu2Me)2]+: A Unique 14-Electron Ru11 Complex with Two Agostic Interactions. Angewandte Chemie International Edition in English, 1997, 36, 2004-2006.	4.4	51

#	Article	IF	CITATIONS
217	Reactivity of RuCl2(CO)(PtBu2Me)2toward H2and Brønsted Acids: Aggregation Triggered by Protonation and Phosphine Loss. Inorganic Chemistry, 1996, 35, 7035-7040.	1.9	23
218	Assaying Myeloperoxidase Inhibitors and Hypochlorous Acid Scavengers in HL60 Cell Line Using Quantum Dots. American Journal of Biomedical Sciences, 0, , 140-153.	0.2	5
219	Assays based on competitive measurement of the scavenging ability of reactive oxygen/nitrogen species., 0,, 21-38.		4