Giuseppe Mussardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/349899/publications.pdf

Version: 2024-02-01

117 papers

4,811 citations

36 h-index 98798 67 g-index

118 all docs

 $\frac{118}{\text{docs citations}}$

118 times ranked

1255 citing authors

#	Article	IF	CITATIONS
1	Quantum quenches in integrable field theories. New Journal of Physics, 2010, 12, 055015.	2.9	211
2	Introduction to †Quantum Integrability in Out of Equilibrium Systems'. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 064001.	2.3	193
3	Effective Thermal Dynamics Following a Quantum Quench in a Spin Chain. Physical Review Letters, 2009, 102, 127204.	7.8	183
4	Non-integrable quantum field theories as perturbations of certain integrable models. Nuclear Physics B, 1996, 473, 469-508.	2.5	166
5	Boundary energy and boundary states in integrable quantum field theories. Nuclear Physics B, 1995, 453, 581-618.	2.5	160
6	S-matrix of the Yang-Lee edge singularity in two dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 225, 275-278.	4.1	159
7	Off-critical statistical models: Factorized scattering theories and bootstrap program. Physics Reports, 1992, 218, 215-379.	25.6	158
8	Integrable systems away from critically: The Toda field theory and S-matrix of the tricritical Ising model. Nuclear Physics B, 1990, 330, 465-487.	2.5	143
9	Form factors for integrable lagrangian field theories, the sinh-Gordon model. Nuclear Physics B, 1993, 393, 413-441.	2.5	140
10	Non-integrable aspects of the multi-frequency sine-Gordon model. Nuclear Physics B, 1998, 516, 675-703.	2.5	140
11	On the operator content of the sinh-Gordon model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 311, 193-201.	4.1	139
12	The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc. Nuclear Physics B, 1995 , 455 , 724 - 758 .	2.5	135
13	Form factors of descendent operators in perturbed conformal field theories. Nuclear Physics B, 1990, 340, 387-402.	2.5	131
14	Finite temperature correlation functions in integrable QFT. Nuclear Physics B, 1999, 552, 624-642.	2.5	123
15	Generalized Gibbs ensembles for quantum field theories. Physical Review A, 2015, 91, .	2.5	120
16	Long time dynamics following a quench in an integrable quantum spin chain: Local versus nonlocal operators and effective thermal behavior. Physical Review B, 2010, 82, .	3.2	118
17	Infinite-Time Average of Local Fields in an Integrable Quantum Field Theory After a Quantum Quench. Physical Review Letters, 2013, 111, 100401.	7.8	107
18	The scaling region of the tricritical Ising model in two dimensions. Nuclear Physics B, 1991, 348, 591-618.	2.5	102

#	Article	IF	Citations
19	Scattering theory and correlation functions in statistical models with a line of defect. Nuclear Physics B, 1994, 432, 518-550.	2.5	99
20	Correlation length of the vacuum condensate in lattice gauge theories. Zeitschrift Fýr Physik C-Particles and Fields, 1984, 25, 173-177.	1.5	94
21	ELASTIC S-MATRICES IN $(1+1)$ DIMENSIONS AND TODA FIELD THEORIES. International Journal of Modern Physics A, 1990, 05, 4581-4627.	1.5	91
22	Zamolodchikov–Faddeev algebra and quantum quenches in integrable field theories. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P02017.	2.3	81
23	Universal properties of self-avoiding walks from two-dimensional field theory. Nuclear Physics B, 1993, 410, 451-493.	2.5	77
24	Expectation Values in the Lieb-Liniger Bose Gas. Physical Review Letters, 2009, 103, 210404.	7.8	76
25	Quench dynamics in randomly generated extended quantum models. Physical Review B, 2012, 85, .	3.2	75
26	One-dimensional Lieb-Liniger Bose gas as nonrelativistic limit of the sinh-Gordon model. Physical Review A, 2010, 81, .	2.5	72
27	Statistical models with a line of defect. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 328, 123-129.	4.1	61
28	Equilibration properties of classical integrable field theories. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 064011.	2.3	59
29	Decay of particles above threshold in the Ising field theory with magnetic field. Nuclear Physics B, 2006, 737, 291-303.	2.5	54
30	Boundary state in an integrable quantum field theory out of equilibrium. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 734, 52-57.	4.1	53
31	Statistical Field Theory. , 2020, , .		49
32	Correlation functions along a massless flow. Physical Review D, 1995, 51, R6620-R6624.	4.7	47
33	Mass Spectrum of the Two-Dimensional O(3) Sigma Model with al¸Term. Physical Review Letters, 2004, 92, 021601.	7.8	41
34	Bosonic-type S -matrix, vacuum instability and CDD ambiguities. Nuclear Physics B, 2000, 578, 527-551.	2.5	40
35	Semiclassical particle spectrum of double sine-Gordon model. Nuclear Physics B, 2004, 687, 189-219.	2.5	40
36	Local correlations in the super-Tonks-Girardeau gas. Physical Review A, 2011, 83, .	2. 5	40

#	Article	IF	CITATIONS
37	STRESS-ENERGY TENSOR AND ULTRAVIOLET BEHAVIOR IN MASSIVE INTEGRABLE QUANTUM FIELD THEORIES. International Journal of Modern Physics A, 1994, 09, 3307-3337.	1.5	39
38	Truncated conformal space approach for 2D Landau–Ginzburg theories. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P12010.	2.3	33
39	Form factors of the elementary field in the Bullough-Dodd model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 307, 83-90.	4.1	32
40	(3+1) massive Dirac fermions with ultracold atoms in frustrated cubic optical lattices. Europhysics Letters, 2010, 92, 50003.	2.0	32
41	Fine structure of the supersymmetric operator product expansion algebras. Nuclear Physics B, 1988, 305, 69-108.	2.5	30
42	Two-point correlation function in integrable QFT with anti-crossing symmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 324, 40-44.	4.1	29
43	ON ISING CORRELATION FUNCTIONS WITH BOUNDARY MAGNETIC FIELD. International Journal of Modern Physics A, 1996, 11, 2765-2782.	1.5	28
44	Finite-volume form factors in semi-classical approximation. Nuclear Physics B, 2003, 670, 464-478.	2.5	28
45	Mapping between the sinh-Gordon and Ising models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 317, 573-580.	4.1	26
46	On truncated generalized Gibbs ensembles in the Ising field theory. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 013103.	2.3	26
47	Ramond sector of the supersymmetric minimal models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 195, 397-406.	4.1	25
48	Neutral bound states in kink-like theories. Nuclear Physics B, 2007, 779, 101-154.	2.5	25
49	Hilbert space and structure constants of descendant fields in two-dimensional conformal theories. Computer Physics Communications, 1991, 66, 71-88.	7.5	23
50	On the finite temperature formalism in integrable quantum field theories. Journal of Physics A, 2001, 34, 7399-7410.	1.6	23
51	FORM FACTORS AND CORRELATION FUNCTIONS OF THE STRESS-ENERGY TENSOR IN MASSIVE DEFORMATION OF THE MINIMAL MODELS (En)1⊗ (En)1/(En)2. International Journal of Modern Physics A, 1996, 11, 5327-5364 mml="http://www.w3.org/1998/Math/MathML"	4. ^{1.5}	22
52	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:n Spectra of Quasi-One-Dimensional Antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math </mml:n </mml:mrow></mml:msub></mml:mrow>	nn>87.8	22
53	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>BaCo</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>2.1</td><td>/mmi:mn><!--</td--></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	2.1	/mmi:mn> </td
54	Semiclassical scaling functions of sine-Gordon model. Nuclear Physics B, 2004, 699, 545-574.	2.5	21

#	Article	IF	CITATIONS
55	One-dimensional Bose gases withN-body attractive interactions. Physical Review A, 2008, 77, .	2.5	19
56	Energy level distribution of perturbed conformal field theories. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P07013.	2.3	19
57	Non relativistic limit of integrable QFT and Lieb–Liniger models. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 123104.	2.3	19
58	Integrability of coupled conformal field theories. Nuclear Physics B, 1998, 512, 523-542.	2.5	18
59	Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P05014.	2.3	18
60	Scattering matrices for φ1,2 perturbed conformal minimal models in absence of kink states. Nuclear Physics B, 1992, 368, 591-610.	2.5	17
61	A quantum field theory with infinite resonance states. Nuclear Physics B, 2000, 567, 454-492.	2.5	17
62	Fusion rules, four-point functions and discrete symmetries of $N=2$ superconformal models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 218, 191-199.	4.1	16
63	Kink scaling functions in 2D non-integrable quantum field theories. Nuclear Physics B, 2006, 736, 259-287.	2.5	16
64	Topological Quantum Hashing with the Icosahedral Group. Physical Review Letters, 2010, 104, 160502.	7.8	16
65	ON THE S MATRIX OF THE SUBLEADING MAGNETIC DEFORMATION OF THE TRICRITICAL ISING MODEL IN TWO DIMENSIONS. International Journal of Modern Physics A, 1992, 07, 5281-5305.	1.5	15
66	Kink confinement and supersymmetry. Journal of High Energy Physics, 2007, 2007, 003-003.	4.7	14
67	Deviations from off-diagonal long-range order in one-dimensional quantum systems. Europhysics Letters, 2018, 122, 50006.	2.0	14
68	Mass generation in perturbed massless integrable models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 617, 133-139.	4.1	13
69	The particle spectrum of the tricritical Ising model with spin reversal symmetric perturbations. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P09004.	2.3	13
70	Effective potentials and kink spectra in non-integrable perturbed conformal field theories. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 304022.	2.1	13
71	On the form factors of relevant operators and their cluster property. Journal of Physics A, 1997, 30, 2895-2913.	1.6	12
72	Semiclassical energy levels of sine-Gordon model on a strip with Dirichlet boundary conditions. Nuclear Physics B, 2005, 705, 548-562.	2.5	12

#	Article	IF	CITATIONS
73	Statistical mechanics of an ideal gas of non-Abelian anyons. Nuclear Physics B, 2013, 867, 950-976.	2.5	12
74	Energy–pressure relation for low-dimensional gases. Nuclear Physics B, 2014, 887, 216-245.	2.5	12
7 5	Non relativistic limit of integrable QFT with fermionic excitations. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 234002.	2.1	12
76	Exact out-of-equilibrium steady states in the semiclassical limit of the interacting Bose gas. SciPost Physics, 2020, 9, .	4.9	12
77	Random bond Ising model and massless phase of the Gross-Neveu model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 351, 515-518.	4.1	11
78	Exact matrix elements in supersymmetric theories. Nuclear Physics B, 1998, 532, 529-566.	2.5	11
79	Universal Ratios in the 2D Tricritical Ising Model. Physical Review Letters, 2000, 85, 126-129.	7.8	11
80	Universal off-diagonal long-range-order behavior for a trapped Tonks-Girardeau gas. Physical Review A, 2018, 98, .	2.5	11
81	Boundary quantum field theories with infinite resonance states. Nuclear Physics B, 2002, 621, 571-586.	2.5	10
82	Approaching the self-dual point of the sinh-Gordon model. Journal of High Energy Physics, 2021, 2021, 1.	4.7	10
83	INTEGRABLE DEFORMATIONS OF THE NONUNITARY MINIMAL CONFORMAL MODEL â,,33,5. International Journal of Modern Physics A, 1992, 07, 5027-5044.	1.5	9
84	Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas. Physical Review Letters, 2019, 123, 130401.	7.8	9
85	A non-perturbative approach to the random-bond Ising model. Journal of Physics A, 1997, 30, 8415-8426.	1.6	8
86	Integrability, non-integrability and confinement. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P01002.	2.3	8
87	Prime Suspects in a Quantum Ladder. Physical Review Letters, 2020, 125, 240603.	7.8	8
88	Confinement in the tricritical Ising model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 828, 137008.	4.1	8
89	φ1,2 deformation of the 2,2n+1 conformal minimal models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 266, 363-369.	4.1	7
90	The subleading magnetic deformation of the tricritical Ising model in two dimensions as RSOS restriction of the Izergin-Korepin model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 274, 367-373.	4.1	7

#	Article	IF	Citations
91	Analytic properties of the free energy: the tricritical Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P03010.	2.3	7
92	Quench dynamics in two-dimensional integrable SUSY models. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 033115.	2.3	6
93	Yang–Lee zeros of the Yang–Lee model. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 484003.	2.1	6
94	Finite temperature off-diagonal long-range order for interacting bosons. Physical Review B, 2020, 102,	3.2	6
95	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>â,,</mml:mi><mml:mo>â†'</mml:mo></mml:mrow></mml:math></pre>	mമ₂amml	:m െ >0
96	Duality and form factors in the thermally deformed two-dimensional tricritical Ising model. SciPost Physics, 2022, 12, .	4.9	6
97	FORM FACTORS IN OFF-CRITICAL SUPERCONFORMAL MODELS. International Journal of Modern Physics B, 1999, 13, 2961-2972.	2.0	5
98	On the fermion–boson correspondence for correlation functions of disorder operators. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 536, 169-176.	4.1	5
99	Generalized Riemann hypothesis and stochastic time series. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 063205.	2.3	5
100	Reflection scattering matrix of the Ising model in a random boundary magnetic field. Nuclear Physics B, 1998, 509, 615-636.	2.5	4
101	Correlation functions of disorder operators in massive ghost theories. Journal of Physics A, 2003, 36, L1-L6.	1.6	4
102	Topological quantum gate construction by iterative pseudogroup hashing. New Journal of Physics, 2011, 13, 025023.	2.9	4
103	Bound states of Majorana fermions in semi-classical approximation. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P12003.	2.3	4
104	Generalized Riemann hypothesis, time series and normal distributions. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 023203.	2.3	4
105	MASS FORMULAE IN TODA FIELD THEORIES. International Journal of Modern Physics A, 1991, 06, 1543-1565.	1.5	3
106	Ultracold bosons with 3-body attractive interactions in an optical lattice. European Physical Journal B, 2009, 68, 417-426.	1.5	3
107	Statistical interparticle potential of an ideal gas of non-Abelian anyons. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 275001.	2.1	3
108	Randomness of Möbius coefficients and Brownian motion: growth of the Mertens function and the Riemann hypothesis. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 113106.	2.3	3

#	Article	IF	CITATIONS
109	CORRELATION FUNCTIONS OF DISORDER OPERATORS IN MASSIVE FREE THEORIES. International Journal of Modern Physics A, 2004, 19, 126-133.	1.5	2
110	The coprime quantum chain. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 033104.	2.3	2
111	Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials. Physical Review A, 2020, 102, .	2.5	2
112	Kinks and Particles in Non-integrable Quantum Field Theories. , 2009, , 509-523.		1
113	Exact critical exponent of fractal branched polymers. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 172, 153-154.	2.1	0
114	Boltzmann: The Genius of Disorder. International Journal of Thermophysics, 2010, 31, 1225-1233.	2.1	0
115	Non-Perturbative Methods in $(1+1)$ Dimensional Quantum Field Theory. Lecture Notes in Physics, 2012, , 333-368.	0.7	O
116	Matrix Elements of Local Fields in Integrable QFT. , 1996, , 349-358.		0
117	Ising Model in a Magnetic Field. NATO ASI Series Series B: Physics, 1997, , 227-236.	0.2	O