Christian Bogdan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3496651/publications.pdf

Version: 2024-02-01

46 papers 5,146 citations

147801 31 h-index 223800 46 g-index

47 all docs

47 docs citations

47 times ranked

7157 citing authors

#	Article	IF	Citations
1	Cytokine-Mediated Regulation of ARG1 in Macrophages and Its Impact on the Control of Salmonella enterica Serovar Typhimurium Infection. Cells, 2021, 10, 1823.	4.1	15
2	Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine: X, 2020, 2, 100041.	1.4	58
3	Arginase impedes the resolution of colitis by altering the microbiome and metabolome. Journal of Clinical Investigation, 2020, 130, 5703-5720.	8.2	44
4	Resolution of Cutaneous Leishmaniasis and Persistence of <i>Leishmania major </i> in the Absence of Arginase 1. Journal of Immunology, 2019, 202, 1453-1464.	0.8	25
5	SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. Colloids and Surfaces B: Biointerfaces, 2019, 174, 95-102.	5.0	6
6	Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. Journal of Clinical Investigation, 2019, 129, 2669-2684.	8.2	51
7	Rhinophyma-Like Cutaneous Leishmaniasis due to Leishmania aethiopica Treated Successfully with Liposomal Amphotericin B. American Journal of Tropical Medicine and Hygiene, 2019, 100, 231-232.	1.4	4
8	The Brief Case: Cutaneous Sporotrichosis in an Immunocompetent Patient after Travel to Peru. Journal of Clinical Microbiology, 2018, 56, .	3.9	2
9	Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites. Frontiers in Immunology, 2018, 9, 24.	4.8	18
10	Type I Interferon Signaling Is Required for CpG-Oligodesoxynucleotide-Induced Control of Leishmania major, but Not for Spontaneous Cure of Subcutaneous Primary or Secondary L. major Infection. Frontiers in Immunology, 2018, 9, 79.	4.8	25
11	Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infection and Immunity, 2017, 85, .	2.2	34
12	Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Frontiers in Immunology, 2017, 8, 1838.	4.8	47
13	TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection. Cell Reports, 2016, 15, 1062-1075.	6.4	102
14	Nitric oxide synthase in innate and adaptive immunity: an update. Trends in Immunology, 2015, 36, 161-178.	6.8	657
15	Fatal Leishmaniasis in the Absence of TNF Despite a Strong Th1 Response. Frontiers in Microbiology, 2015, 6, 1520.	3.5	36
16	Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages. Journal of Investigative Dermatology, 2014, 134, 2339-2346.	0.7	59
17	Natural killer cells in experimental and human leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2012, 2, 69.	3.9	68
18	Leishmaniasis in rheumatology, haematology and oncology: epidemiological, immunological and clinical aspects and caveats: Figure 1. Annals of the Rheumatic Diseases, 2012, 71, i60-i66.	0.9	71

#	Article	IF	CITATIONS
19	Leishmania-Infected Macrophages Are Targets of NK Cell-Derived Cytokines but Not of NK Cell Cytotoxicity. Infection and Immunity, 2011, 79, 2699-2708.	2.2	36
20	ILâ€18, but not ILâ€15, contributes to the ILâ€12â€dependent induction of NKâ€cell effector functions by <i>Leishmania infantum in vivo</i> . European Journal of Immunology, 2010, 40, 1708-1717.	2.9	45
21	Regulation of Lymphocytes by Nitric Oxide. Methods in Molecular Biology, 2010, 677, 375-393.	0.9	77
22	Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis. Immunobiology, 2010, 215, 826-832.	1.9	25
23	Generation, Culture and Flow-Cytometric Characterization of Primary Mouse Macrophages. Methods in Molecular Biology, 2009, 531, 203-224.	0.9	55
24	Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nature Immunology, 2008, 9, 1399-1406.	14.5	558
25	Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cellular Microbiology, 2008, 10, 1221-1234.	2.1	132
26	The innate immune response against Leishmania parasites. Immunobiology, 2008, 213, 377-387.	1.9	142
27	NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. Journal of Experimental Medicine, 2007, 204, 893-906.	8.5	168
28	TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. European Journal of Immunology, 2007, 37, 3424-3434.	2.9	140
29	Cytokine-mediated control of lipopolysaccharide-induced activation of small intestinal epithelial cells. Immunology, 2007, 122, 306-315.	4.4	33
30	Minute numbers of contaminant CD8+ T cells or CD11b+CD11c+ NK cells are the source of IFN- \hat{l}^3 in IL-12/IL-18-stimulated mouse macrophage populations. Blood, 2005, 105, 1319-1328.	1.4	86
31	Translational Control of Inducible Nitric Oxide Synthase by IL-13 and Arginine Availability in Inflammatory Macrophages. Journal of Immunology, 2003, 171, 4561-4568.	0.8	160
32	Response to 'Species differences in macrophage NO production are important'. Nature Immunology, 2002, 3, 102-102.	14.5	21
33	Visceral Leishmaniasis in a German Child Who Had Never Entered a Known Endemic Area: Case Report and Review of the Literature. Clinical Infectious Diseases, 2001, 32, 302-306.	5.8	125
34	The Production of IFN- \hat{I}^3 by IL-12/IL-18-Activated Macrophages Requires STAT4 Signaling and Is Inhibited by IL-4. Journal of Immunology, 2001, 166, 3075-3082.	0.8	168
35	Regulation of type 2 nitric oxide synthase by type 1 interferons in macrophages infected withLeishmania major. European Journal of Immunology, 2000, 30, 2257-2267.	2.9	58
36	The role of nitric oxide in innate immunity. Immunological Reviews, 2000, 173, 17-26.	6.0	572

#	Article	IF	CITATIONS
37	Fibroblasts as Host Cells in Latent Leishmaniosis. Journal of Experimental Medicine, 2000, 191, 2121-2130.	8.5	193
38	IFN- \hat{I}^3 inhibits the production of latent transforming growth factor- \hat{I}^2 1 by mouse inflammatory macrophages. European Journal of Immunology, 1998, 28, 1181-1188.	2.9	15
39	Type 1 Interferon (IFNÎ \pm /β) and Type 2 Nitric Oxide Synthase Regulate the Innate Immune Response to a Protozoan Parasite. Immunity, 1998, 8, 77-87.	14.3	354
40	The immune response to Leishmania: mechanisms of parasite control and evasion. International Journal for Parasitology, 1998, 28, 121-134.	3.1	246
41	2,4-diamino-6-hydroxypyrimidine, an inhibitor of tetrahydrobiopterin synthesis, downregulates the expression of iNOS protein and mRNA in primary murine macrophages. FEBS Letters, 1995, 363, 69-74.	2.8	27
42	Cytokine interactions in experimental cutaneous leishmaniasis. Interleukin 4 synergizes with interferon- \hat{l}^3 to activate murine macrophages for killing ofLeishmania major amastigotes. European Journal of Immunology, 1991, 21, 327-333.	2.9	88
43	Cytokine interactions in experimental cutaneous leishmaniasis. II. Endogenous tumor necrosis factor-α production by macrophages is induced by the synergistic action of interferon (IFN)-γ and interleukin (IL) 4 and accounts for the antiparasitic effect mediated by IFN-γ and IL 4. European Journal of Immunology, 1991, 21, 1669-1675.	2.9	60
44	Tumor necrosis factor- \hat{l}_{\pm} in combination with interferon- \hat{l}_{3} , but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. European Journal of Immunology, 1990, 20, 1131-1135.	2.9	185
45	Immunization of susceptible hosts with a soluble antigen fraction fromLeishmania major leads to aggravation of murine leishmaniasis mediated by CD4+ T cells. European Journal of Immunology, 1990, 20, 2533-2540.	2.9	28
46	Detection of Potentially Diagnostic Leishmanial Antigens by Western Blot Analysis of Sera from Patients with Kala-Azar or Multilesional Cutaneous Leishmaniasis. Journal of Infectious Diseases, 1990, 162, 1417-1418.	4.0	27