
Gunnar Blohm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3495312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Motor imagery helps updating internal models during microgravity exposure. Journal of Neurophysiology, 2022, , .	1.8	3
2	Neuromatch Academy: a 3-week, online summer school in computational neuroscience. The Journal of Open Source Education, 2022, 5, 118.	0.4	0
3	Effector-dependent stochastic reference frame transformations alter decision-making. Journal of Vision, 2022, 22, 1.	0.3	3
4	Confidence in predicted position error explains saccadic decisions during pursuit. Journal of Neurophysiology, 2021, 125, 748-767.	1.8	4
5	Movement drift in optic ataxia reveals deficits in hand state estimation in oculocentric coordinates Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 635-647.	0.9	4
6	MoVi: A large multi-purpose human motion and video dataset. PLoS ONE, 2021, 16, e0253157.	2.5	35
7	Neuromatch Academy: Teaching Computational Neuroscience with Global Accessibility. Trends in Cognitive Sciences, 2021, 25, 535-538.	7.8	14
8	Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity. Frontiers in Neural Circuits, 2021, 15, 750267.	2.8	3
9	Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity. Frontiers in Neural Circuits, 2021, 15, 750176.	2.8	3
10	Reaching around obstacles accounts for uncertainty in coordinate transformations. Journal of Neurophysiology, 2020, 123, 1920-1932.	1.8	2
11	Predicted Position Error Triggers Catch-Up Saccades during Sustained Smooth Pursuit. ENeuro, 2020, 7, ENEURO.0196-18.2019.	1.9	8
12	A How-to-Model Guide for Neuroscience. ENeuro, 2020, 7, ENEURO.0352-19.2019.	1.9	14
13	Saccade-induced changes in ocular torsion reveal predictive orientation perception. Journal of Vision, 2019, 19, 10.	0.3	5
14	Hierarchical recruitment of competition alleviates working memory overload in a frontoparietal model. Journal of Vision, 2019, 19, 8.	0.3	0
15	Misperception of motion in depth originates from an incomplete transformation of retinal signals. Journal of Vision, 2019, 19, 21.	0.3	1
16	Ten Simple Rules for Organizing and Running a Successful Intensive Two-Week Course. Neural Computation, 2019, 31, 1-7.	2.2	16
17	Anti-saccades predict cognitive functions in older adults and patients with Parkinson's disease. PLoS ONE, 2018, 13, e0207589.	2.5	21
18	Weighted integration of short-term memory and sensory signals in the oculomotor system. Journal of Vision, 2018, 18, 16,	0.3	34

Gunnar Blohm

#	Article	IF	CITATIONS
19	Transsaccadic memory of multiple spatially variant and invariant object features. Journal of Vision, 2018, 18, 6.	0.3	3
20	Neck muscle spindle noise biases reaches in a multisensory integration task. Journal of Neurophysiology, 2018, 120, 893-909.	1.8	13
21	Learned rather than online relative weighting of visual-proprioceptive sensory cues. Journal of Neurophysiology, 2018, 119, 1981-1992.	1.8	14
22	Corrective response times in a coordinated eye-head-arm countermanding task. Journal of Neurophysiology, 2018, 119, 2036-2051.	1.8	10
23	Vibrotactile information improves proprioceptive reaching target localization. PLoS ONE, 2018, 13, e0199627.	2.5	14
24	Strategic working memory performance may confound the interpretation of cumulative task statistics. Journal of Vision, 2018, 18, 685.	0.3	1
25	Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital–Parietal–Frontal Cortex: An fMRI Study. Cerebral Cortex, 2017, 27, 5242-5260.	2.9	23
26	Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biological Psychology, 2017, 129, 36-44.	2.2	66
27	Scene Configuration and Object Reliability Affect the Use of Allocentric Information for Memory-Guided Reaching. Frontiers in Neuroscience, 2017, 11, 204.	2.8	17
28	Effects of a pretarget distractor on saccade reaction times across space and time in monkeys and humans. Journal of Vision, 2016, 16, 5.	0.3	10
29	Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells. Journal of Neurophysiology, 2016, 115, 2615-2634.	1.8	7
30	Neural correlate of spatial (misâ€)localization during smooth eye movements. European Journal of Neuroscience, 2016, 44, 1846-1855.	2.6	15
31	Allocentric information is used for memory-guided reaching in depth: A virtual reality study. Vision Research, 2016, 129, 13-24.	1.4	29
32	Saccade execution suppresses discrimination at distractor locations rather than enhancing the saccade goal location. European Journal of Neuroscience, 2015, 41, 1624-1634.	2.6	27
33	Contextual factors determine the use of allocentric information for reaching in a naturalistic scene. Journal of Vision, 2015, 15, 24.	0.3	18
34	Quantifying effects of stochasticity in reference frame transformations on posterior distributions. Frontiers in Computational Neuroscience, 2015, 9, 82.	2.1	14
35	Ca ²⁺ -induced uncoupling of <i>Aplysia</i> bag cell neurons. Journal of Neurophysiology, 2015, 113, 808-821.	1.8	7
36	EEG-Based Perceived Tactile Location Prediction. IEEE Transactions on Autonomous Mental Development, 2015, 7, 342-348.	1.6	9

GUNNAR BLOHM

#	Article	IF	CITATIONS
37	Computations underlying the visuomotor transformation for smooth pursuit eye movements. Journal of Neurophysiology, 2015, 113, 1377-1399.	1.8	6
38	Predicting Cognitive Function from Clinical Measures of Physical Function and Health Status in Older Adults. PLoS ONE, 2015, 10, e0119075.	2.5	22
39	Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment. Frontiers in Human Neuroscience, 2014, 8, 636.	2.0	37
40	On the neural implementation of the speed-accuracy trade-off. Frontiers in Neuroscience, 2014, 8, 236.	2.8	49
41	Neural dynamics implement a flexible decision bound with a fixed firing rate for choice: a model-based hypothesis. Frontiers in Neuroscience, 2014, 8, 318.	2.8	11
42	Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement. Journal of Vision, 2014, 14, 12-12.	0.3	33
43	Hierarchical control of two-dimensional gaze saccades. Journal of Computational Neuroscience, 2014, 36, 355-382.	1.0	36
44	Calcium-Dependent Calcium Decay Explains STDP in a Dynamic Model of Hippocampal Synapses. PLoS ONE, 2014, 9, e86248.	2.5	14
45	Kalman Filtering Naturally Accounts for Visually Guided and Predictive Smooth Pursuit Dynamics. Journal of Neuroscience, 2013, 33, 17301-17313.	3.6	97
46	A New Method for EEG-Based Concealed Information Test. IEEE Transactions on Information Forensics and Security, 2013, 8, 520-527.	6.9	34
47	Separate Ca2+ Sources Are Buffered by Distinct Ca2+ Handling Systems in Aplysia Neuroendocrine Cells. Journal of Neuroscience, 2013, 33, 6476-6491.	3.6	15
48	Causal evidence for posterior parietal cortex involvement in visual-to-motor transformations of reach targets. Cortex, 2013, 49, 2439-2448.	2.4	12
49	Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements. Journal of Neurophysiology, 2013, 110, 732-747.	1.8	10
50	Accounting for direction and speed of eye motion in planning visually guided manual tracking. Journal of Neurophysiology, 2013, 110, 1945-1957.	1.8	11
51	3D kinematics using dual quaternions: theory and applications in neuroscience. Frontiers in Behavioral Neuroscience, 2013, 7, 7.	2.0	42
52	Adaptive cluster analysis approach for functional localization using magnetoencephalography. Frontiers in Neuroscience, 2013, 7, 73.	2.8	14
53	Accurate planning of manual tracking requires a 3D visuomotor transformation of velocity signals. Journal of Vision, 2012, 12, 6-6.	0.3	7
54	Target motion direction influence on tracking performance and head tracking strategies in head-unrestrained conditions. Journal of Vision, 2012, 12, 23-23.	0.3	15

GUNNAR BLOHM

#	Article	IF	CITATIONS
55	Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces. Frontiers in Neuroscience, 2012, 6, 151.	2.8	107
56	Simulating the Cortical 3D Visuomotor Transformation of Reach Depth. PLoS ONE, 2012, 7, e41241.	2.5	15
57	Intrinsic Reference Frames of Superior Colliculus Visuomotor Receptive Fields during Head-Unrestrained Gaze Shifts. Journal of Neuroscience, 2011, 31, 18313-18326.	3.6	34
58	Head roll influences perceived hand position. Journal of Vision, 2011, 11, 3-3.	0.3	18
59	Multi-Sensory Weights Depend on Contextual Noise in Reference Frame Transformations. Frontiers in Human Neuroscience, 2010, 4, 221.	2.0	56
60	Visuomotor Velocity Transformations for Smooth Pursuit Eye Movements. Journal of Neurophysiology, 2010, 104, 2103-2115.	1.8	22
61	Influence of Saccade Efference Copy on the Spatiotemporal Properties of Remapping: A Neural Network Study. Journal of Neurophysiology, 2010, 103, 117-139.	1.8	25
62	Saccadic Compensation for Smooth Eye and Head Movements During Head-Unrestrained Two-Dimensional Tracking. Journal of Neurophysiology, 2010, 103, 543-556.	1.8	14
63	The default allocation of attention is broadly ahead of smooth pursuit. Journal of Vision, 2010, 10, 7-7.	0.3	37
64	Differential Influence of Attention on Gaze and Head Movements. Journal of Neurophysiology, 2009, 101, 198-206.	1.8	27
65	Decoding the Cortical Transformations for Visually Guided Reaching in 3D Space. Cerebral Cortex, 2009, 19, 1372-1393.	2.9	102
66	Fields of Gain in the Brain. Neuron, 2009, 64, 598-600.	8.1	26
67	Transforming retinal velocity into 3D motor coordinates for pursuit eye movements. IFMBE Proceedings, 2009, , 55-58.	0.3	0
68	Depth estimation from retinal disparity requires eye and head orientation signals. Journal of Vision, 2008, 8, 3-3.	0.3	29
69	Computations for geometrically accurate visually guided reaching in 3-D space. Journal of Vision, 2007, 7, 4.	0.3	68
70	Influence of initial hand and target position on reach errors in optic ataxic and normal subjects. Journal of Vision, 2007, 7, 8.	0.3	36
71	Comparing limb proprioception and oculomotor signals during hand-guided saccades. Experimental Brain Research, 2007, 182, 189-198.	1.5	9
72	Proprioceptive Guidance of Saccades in Eye–Hand Coordination. Journal of Neurophysiology, 2006, 96, 1464-1477.	1.8	44

GUNNAR BLOHM

#	Article	IF	CITATIONS
73	A model that integrates eye velocity commands to keep track of smooth eye displacements. Journal of Computational Neuroscience, 2006, 21, 51-70.	1.0	19
74	Processing of Retinal and Extraretinal Signals for Memory-Guided Saccades During Smooth Pursuit. Journal of Neurophysiology, 2005, 93, 1510-1522.	1.8	48
75	Direct Evidence for a Position Input to the Smooth Pursuit System. Journal of Neurophysiology, 2005, 94, 712-721.	1.8	54
76	Smooth anticipatory eye movements alter the memorized position of flashed targets. Journal of Vision, 2003, 3, 10.	0.3	16
77	Interaction Between Smooth Anticipation and Saccades During Ocular Orientation in Darkness. Journal of Neurophysiology, 2003, 89, 1423-1433.	1.8	34
78	What Triggers Catch-Up Saccades During Visual Tracking?. Journal of Neurophysiology, 2002, 87, 1646-1650.	1.8	149