## Michel Versluis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494755/publications.pdf Version: 2024-02-01



MICHEL VEDSUUS

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture.<br>Journal of the Acoustical Society of America, 2005, 118, 3499-3505.       | 1.1  | 587       |
| 2  | Passive ultrasonic irrigation of the root canal: a review of the literature. International Endodontic<br>Journal, 2007, 40, 415-426.                                         | 5.0  | 569       |
| 3  | Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. Journal of<br>Controlled Release, 2006, 112, 149-155.                             | 9.9  | 529       |
| 4  | Sonoporation from Jetting Cavitation Bubbles. Biophysical Journal, 2006, 91, 4285-4295.                                                                                      | 0.5  | 420       |
| 5  | How Snapping Shrimp Snap: Through Cavitating Bubbles. Science, 2000, 289, 2114-2117.                                                                                         | 12.6 | 378       |
| 6  | Microbubble spectroscopy of ultrasound contrast agents. Journal of the Acoustical Society of America, 2007, 121, 648-656.                                                    | 1.1  | 312       |
| 7  | Acoustic behavior of microbubbles and implications for drug delivery. Advanced Drug Delivery Reviews, 2014, 72, 28-48.                                                       | 13.7 | 295       |
| 8  | Laserâ€activated irrigation within root canals: cleaning efficacy and flow visualization. International Endodontic Journal, 2009, 42, 1077-1083.                             | 5.0  | 222       |
| 9  | Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames. Review of Scientific Instruments, 2003, 74, 5026-5034.                        | 1.3  | 204       |
| 10 | Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices. Physical Review Letters, 2008, 100, 034504.                                                   | 7.8  | 196       |
| 11 | Impact on Soft Sand: Void Collapse and Jet Formation. Physical Review Letters, 2004, 93, 198003.                                                                             | 7.8  | 191       |
| 12 | High-speed optical observations of contrast agent destruction. Ultrasound in Medicine and Biology, 2005, 31, 391-399.                                                        | 1.5  | 184       |
| 13 | "Compression-Only―Behavior of Phospholipid-Coated Contrast Bubbles. Ultrasound in Medicine and<br>Biology, 2007, 33, 653-656.                                                | 1.5  | 168       |
| 14 | Evaluation of Irrigant Flow in the Root Canal Using Different Needle Types by an Unsteady<br>Computational Fluid Dynamics Model. Journal of Endodontics, 2010, 36, 875-879.  | 3.1  | 167       |
| 15 | Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Applied Physics Letters, 2007, 90, .                  | 3.3  | 166       |
| 16 | Acoustic droplet vaporization is initiated by superharmonic focusing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1697-1702. | 7.1  | 159       |
| 17 | Ultrasonic characterization of ultrasound contrast agents. Medical and Biological Engineering and Computing, 2009, 47, 861-873.                                              | 2.8  | 155       |
| 18 | Breakup of diminutive Rayleigh jets. Physics of Fluids, 2010, 22, .                                                                                                          | 4.0  | 147       |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nonlinear Shell Behavior of Phospholipid-Coated Microbubbles. Ultrasound in Medicine and Biology, 2010, 36, 2080-2092.                                                                        | 1.5 | 145       |
| 20 | The Effect of Needle-insertion Depth on the Irrigant Flow in the Root Canal: Evaluation Using an Unsteady Computational Fluid Dynamics Model. Journal of Endodontics, 2010, 36, 1664-1668.    | 3.1 | 141       |
| 21 | The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble<br>Fundamentals to Clinical Translation. Langmuir, 2019, 35, 10173-10191.                               | 3.5 | 140       |
| 22 | Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction. Ultrasound in<br>Medicine and Biology, 2004, 30, 1255-1258.                                                  | 1.5 | 135       |
| 23 | Evaluation of a Sonic Device Designed to Activate Irrigant in the Root Canal. Journal of Endodontics, 2010, 36, 143-146.                                                                      | 3.1 | 135       |
| 24 | Nonspherical Oscillations of Ultrasound Contrast Agent Microbubbles. Ultrasound in Medicine and Biology, 2008, 34, 1465-1473.                                                                 | 1.5 | 129       |
| 25 | Microbubble shape oscillations excited through ultrasonic parametric driving. Physical Review E, 2010, 82, 026321.                                                                            | 2.1 | 127       |
| 26 | High-speed imaging in fluids. Experiments in Fluids, 2013, 54, 1.                                                                                                                             | 2.4 | 127       |
| 27 | Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. Journal of<br>Fluid Mechanics, 2017, 823, 470-497.                                                | 3.4 | 126       |
| 28 | The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady<br>Computational Fluid Dynamics model. International Endodontic Journal, 2010, 43, 874-881. | 5.0 | 124       |
| 29 | 20 years of ultrasound contrast agent modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 7-20.                                                      | 3.0 | 122       |
| 30 | Microbubble Agents: New Directions. Ultrasound in Medicine and Biology, 2020, 46, 1326-1343.                                                                                                  | 1.5 | 118       |
| 31 | Ultrasound Contrast Agent Modeling: A Review. Ultrasound in Medicine and Biology, 2020, 46, 2117-2144.                                                                                        | 1.5 | 110       |
| 32 | Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. Journal of<br>Controlled Release, 2009, 133, 109-118.                                                  | 9.9 | 109       |
| 33 | Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. Journal of the Acoustical Society of America, 2010, 128, 3239-3252.                                       | 1.1 | 107       |
| 34 | The effect of root canal taper on the irrigant flow: evaluation using an unsteady Computational Fluid Dynamics model. International Endodontic Journal, 2010, 43, 909-916.                    | 5.0 | 104       |
| 35 | The Influence of the Ultrasonic Intensity on the Cleaning Efficacy of Passive Ultrasonic Irrigation.<br>Journal of Endodontics, 2011, 37, 688-692.                                            | 3.1 | 99        |
| 36 | Hysteretic clustering in granular gas. Europhysics Letters, 2001, 53, 328-334.                                                                                                                | 2.0 | 96        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Air entrapment in piezo-driven inkjet printheads. Journal of the Acoustical Society of America, 2006, 120, 1257-1265.                                                                                                        | 1.1  | 95        |
| 38 | Harmonic chirp imaging method for ultrasound contrast agent. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2005, 52, 241-249.                                                                  | 3.0  | 93        |
| 39 | Snapping shrimp make flashing bubbles. Nature, 2001, 413, 477-478.                                                                                                                                                           | 27.8 | 92        |
| 40 | Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials, 2016, 83, 294-307.                                                                      | 11.4 | 89        |
| 41 | The acceleration of solid particles subjected to cavitation nucleation. Journal of Fluid Mechanics, 2008, 610, 157-182.                                                                                                      | 3.4  | 88        |
| 42 | Velocity Profile inside Piezoacoustic Inkjet Droplets in Flight: Comparison between Experiment and Numerical Simulation. Physical Review Applied, 2014, 1, .                                                                 | 3.8  | 85        |
| 43 | Radiographic Healing after a Root Canal Treatment Performed in Single-rooted Teeth with and<br>without Ultrasonic Activation of the Irrigant: A Randomized Controlled Trial. Journal of<br>Endodontics, 2013, 39, 1218-1225. | 3.1  | 84        |
| 44 | The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics, 2013, 53, 1368-1376.                                                                           | 3.9  | 83        |
| 45 | High-speed imaging of an ultrasound-driven bubble in contact with a wall: "Narcissus―effect and resolved acoustic streaming. Experiments in Fluids, 2006, 41, 147-153.                                                       | 2.4  | 81        |
| 46 | Influence of the Oscillation Direction of an Ultrasonic File on the Cleaning Efficacy of Passive Ultrasonic Irrigation. Journal of Endodontics, 2010, 36, 1372-1376.                                                         | 3.1  | 79        |
| 47 | Giant and explosive plasmonic bubbles by delayed nucleation. Proceedings of the National Academy of<br>Sciences of the United States of America, 2018, 115, 7676-7681.                                                       | 7.1  | 76        |
| 48 | Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Applied Physics B: Lasers and Optics, 2000, 71, 95-111.                                        | 2.2  | 75        |
| 49 | Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High<br>Production Rates. Langmuir, 2016, 32, 3937-3944.                                                                               | 3.5  | 74        |
| 50 | Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments. Journal of the Acoustical Society of America, 2016, 140, 2506-2517.                                          | 1.1  | 72        |
| 51 | Lipid Shedding from Single Oscillating Microbubbles. Ultrasound in Medicine and Biology, 2014, 40, 1834-1846.                                                                                                                | 1.5  | 71        |
| 52 | Gravitational Effect in Evaporating Binary Microdroplets. Physical Review Letters, 2019, 122, 114501.                                                                                                                        | 7.8  | 71        |
| 53 | "Compression-only―behavior: A second-order nonlinear response of ultrasound contrast agent<br>microbubbles. Journal of the Acoustical Society of America, 2011, 129, 1729-1739.                                              | 1.1  | 70        |
| 54 | 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. Applied Physics B: Lasers and Optics, 1997, 65, 411-417.                                         | 2.2  | 67        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7, 5417.                                                                            | 2.7 | 67        |
| 56 | Characterizing the Subharmonic Response of Phospholipid-Coated Microbubbles for Carotid Imaging.<br>Ultrasound in Medicine and Biology, 2011, 37, 958-970.                                    | 1.5 | 67        |
| 57 | Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Physics of Fluids, 2011, 23, .                                                                                 | 4.0 | 67        |
| 58 | The role of gas in ultrasonically driven vapor bubble growth. Physics in Medicine and Biology, 2013, 58, 2523-2535.                                                                           | 3.0 | 67        |
| 59 | Nonspherical Shape Oscillations of Coated Microbubbles inÂContact With a Wall. Ultrasound in<br>Medicine and Biology, 2011, 37, 935-948.                                                      | 1.5 | 65        |
| 60 | Nonspherical Vibrations of Microbubbles in Contact with a Wall—A Pilot Study at Low Mechanical<br>Index. Ultrasound in Medicine and Biology, 2008, 34, 685-688.                               | 1.5 | 64        |
| 61 | Three-year outcome of the covered endovascular reconstruction of the aortic bifurcation technique for aortoiliac occlusive disease. Journal of Vascular Surgery, 2018, 67, 1438-1447.         | 1.1 | 64        |
| 62 | Acoustic bubble sorting for ultrasound contrast agent enrichment. Lab on A Chip, 2014, 14, 1705-1714.                                                                                         | 6.0 | 63        |
| 63 | Evaporation-Triggered Segregation of Sessile Binary Droplets. Physical Review Letters, 2018, 120, 224501.                                                                                     | 7.8 | 63        |
| 64 | A far infrared laser sideband spectrometer in the frequency region 550–2700 GHz. Review of Scientific<br>Instruments, 1990, 61, 1612-1625.                                                    | 1.3 | 62        |
| 65 | Ultrasound-induced gas release from contrast agent microbubbles. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2005, 52, 1035-1041.                             | 3.0 | 59        |
| 66 | Pressure-Dependent Attenuation and Scattering of Phospholipid-Coated Microbubbles at Low Acoustic Pressures. Ultrasound in Medicine and Biology, 2009, 35, 102-111.                           | 1.5 | 59        |
| 67 | Dynamics of Coated Microbubbles Adherent to a Wall. Ultrasound in Medicine and Biology, 2011, 37, 1500-1508.                                                                                  | 1.5 | 59        |
| 68 | Cavitation Measurement during Sonic and Ultrasonic Activated Irrigation. Journal of Endodontics, 2014, 40, 580-583.                                                                           | 3.1 | 59        |
| 69 | Measurement and visualization of fileâ€toâ€wall contact during ultrasonically activated irrigation in simulated canals. International Endodontic Journal, 2013, 46, 1046-1055.                | 5.0 | 58        |
| 70 | Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. Journal of the<br>Acoustical Society of America, 2013, 134, 1610-1621.                                         | 1.1 | 57        |
| 71 | Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16756-16763. | 7.1 | 57        |
| 72 | Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using highâ€speed imaging. International Endodontic Journal, 2010, 43, 393-403.    | 5.0 | 56        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Irrigant Flow beyond the Insertion Depth of an Ultrasonically Oscillating File in Straight and Curved<br>Root Canals: Visualization and Cleaning Efficacy. Journal of Endodontics, 2012, 38, 657-661. | 3.1  | 55        |
| 74 | High-efficiency ballistic electrostatic generator using microdroplets. Nature Communications, 2014, 5, 3575.                                                                                          | 12.8 | 55        |
| 75 | History force on coated microbubbles propelled by ultrasound. Physics of Fluids, 2009, 21, .                                                                                                          | 4.0  | 53        |
| 76 | Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and Computational Fluid Dynamics approach. International Endodontic Journal, 2014, 47, 191-201.         | 5.0  | 53        |
| 77 | Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and<br>Deep Tissue Imaging Potential. Ultrasound in Medicine and Biology, 2018, 44, 1482-1492.         | 1.5  | 53        |
| 78 | Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features.<br>Review of Scientific Instruments, 2012, 83, 103706.                                        | 1.3  | 52        |
| 79 | Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity. Physics of<br>Fluids, 2006, 18, 121511.                                                                  | 4.0  | 51        |
| 80 | Acoustic characterization of single ultrasound contrast agent microbubbles. Journal of the Acoustical Society of America, 2008, 124, 4091-4097.                                                       | 1.1  | 51        |
| 81 | Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC.<br>Ultrasound in Medicine and Biology, 2015, 41, 1432-1445.                                           | 1.5  | 51        |
| 82 | Radial Modulation of Microbubbles for Ultrasound Contrast Imaging. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2283-2290.                                   | 3.0  | 49        |
| 83 | Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie.<br>New Journal of Physics, 2009, 11, 013046.                                                        | 2.9  | 49        |
| 84 | Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models. Ultrasonics Sonochemistry, 2014, 21, 324-335.         | 8.2  | 47        |
| 85 | Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759.                                                                                 | 2.7  | 47        |
| 86 | Multicore Liquid Perfluorocarbon‣oaded Multimodal Nanoparticles for Stable Ultrasound and<br><sup>19</sup> F MRI Applied to In Vivo Cell Tracking. Advanced Functional Materials, 2019, 29, 1806485.  | 14.9 | 47        |
| 87 | Acoustical Properties of Individual Liposome-Loaded Microbubbles. Ultrasound in Medicine and<br>Biology, 2012, 38, 2174-2185.                                                                         | 1.5  | 45        |
| 88 | <i>In vitro</i> methods to study bubble-cell interactions: Fundamentals and therapeutic applications.<br>Biomicrofluidics, 2016, 10, 011501.                                                          | 2.4  | 45        |
| 89 | Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles.<br>Biomicrofluidics, 2012, 6, 34114.                                                                  | 2.4  | 42        |
| 90 | Far infrared laser sideband spectroscopy of H3O+: the pure inversion spectrum around 55 cm-1.<br>Chemical Physics Letters, 1989, 161, 195-201.                                                        | 2.6  | 41        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-precision acoustic measurements of the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles. Soft Matter, 2018, 14, 9550-9561.                                                                  | 2.7 | 41        |
| 92  | Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. Journal of Controlled Release, 2020, 324, 303-316.                                                               | 9.9 | 41        |
| 93  | Universal Equations for the Coalescence Probability and Long-Term Size Stability of<br>Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing. Langmuir, 2017, 33,<br>10329-10339.                                  | 3.5 | 40        |
| 94  | Ultrasound microbubble induced endothelial cell permeability. Journal of Controlled Release, 2006, 116, e100-e102.                                                                                                                 | 9.9 | 39        |
| 95  | Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces. Physics in Medicine and Biology, 2011, 56, 6161-6177.                                                                                   | 3.0 | 39        |
| 96  | Optical observations of acoustical radiation force effects on individual air bubbles. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 104-110.                                               | 3.0 | 38        |
| 97  | Enhancing acoustic cavitation using artificial crevice bubbles. Ultrasonics, 2015, 56, 512-523.                                                                                                                                    | 3.9 | 38        |
| 98  | Combined optical and acoustical detection of single microbubble dynamics. Journal of the Acoustical Society of America, 2011, 130, 3271-3281.                                                                                      | 1.1 | 37        |
| 99  | Role of the confinement of a root canal on jet impingement during endodontic irrigation. Experiments in Fluids, 2012, 53, 1841-1853.                                                                                               | 2.4 | 37        |
| 100 | Acoustic streaming induced by an ultrasonically oscillating endodontic file. Journal of the Acoustical Society of America, 2014, 135, 1717-1730.                                                                                   | 1.1 | 37        |
| 101 | Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium<br>hypochlorite with bovine dentine during ultrasonic activated irrigation. International Endodontic<br>Journal, 2014, 47, 147-154. | 5.0 | 37        |
| 102 | Oblique drop impact onto a deep liquid pool. Physical Review Fluids, 2017, 2, .                                                                                                                                                    | 2.5 | 36        |
| 103 | Secondary Bjerknes Forces Deform Targeted Microbubbles. Ultrasound in Medicine and Biology, 2013, 39, 490-506.                                                                                                                     | 1.5 | 35        |
| 104 | On the Acoustic Properties of Vaporized Submicron Perfluorocarbon Droplets. Ultrasound in<br>Medicine and Biology, 2014, 40, 1379-1384.                                                                                            | 1.5 | 35        |
| 105 | Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles.<br>Communications Physics, 2018, 1, .                                                                                                 | 5.3 | 35        |
| 106 | Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Review of Scientific Instruments, 2013, 84, 063701.                                                                                  | 1.3 | 34        |
| 107 | A novel methodology providing insights into removal of biofilmâ€mimicking hydrogel from lateral morphological features of the root canal during irrigation procedures. International Endodontic Journal, 2014, 47, 1040-1051.      | 5.0 | 34        |
| 108 | Hemodynamic comparison of stent configurations used for aortoiliac occlusive disease. Journal of Vascular Surgery, 2017, 66, 251-260.e1.                                                                                           | 1.1 | 34        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Radial modulation of single microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2370-2379.                                                                  | 3.0  | 33        |
| 110 | Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnology and Bioengineering, 2015, 112, 220-227.                                             | 3.3  | 33        |
| 111 | Spiraling Bubbles: How Acoustic and Hydrodynamic Forces Compete. Physical Review Letters, 2001, 86, 4819-4822.                                                                                           | 7.8  | 32        |
| 112 | Marangoni flow on an inkjet nozzle plate. Applied Physics Letters, 2007, 91, 204102.                                                                                                                     | 3.3  | 32        |
| 113 | InÂVivo Characterization of Ultrasound Contrast Agents: Microbubble Spectroscopy in a Chicken<br>Embryo. Ultrasound in Medicine and Biology, 2012, 38, 1608-1617.                                        | 1.5  | 32        |
| 114 | Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight. Experiments in Fluids, 2017, 58, 1.                                                              | 2.4  | 32        |
| 115 | Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. Journal of Controlled Release, 2019, 316, 79-92.                                                                               | 9.9  | 32        |
| 116 | Ultrafast vapourization dynamics of laser-activated polymeric microcapsules. Nature<br>Communications, 2014, 5, 3671.                                                                                    | 12.8 | 31        |
| 117 | Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment. Lab on A Chip, 2015, 15, 3716-3722.                                                                                    | 6.0  | 31        |
| 118 | THE HEAT FLUX METHOD FOR PRODUCING BURNER STABILIZED ADIABATIC FLAMES: AN EVALUATION WITH CARS THERMOMETRY. Combustion Science and Technology, 2001, 169, 69-87.                                         | 2.3  | 30        |
| 119 | An Evaluation of the Effect of Pulsed Ultrasound on the Cleaning Efficacy of Passive Ultrasonic<br>Irrigation. Journal of Endodontics, 2010, 36, 1887-1891.                                              | 3.1  | 30        |
| 120 | Ultrasound-Sensitive Liposomes for Triggered Macromolecular Drug Delivery: Formulation and In<br>Vitro Characterization. Frontiers in Pharmacology, 2019, 10, 1463.                                      | 3.5  | 30        |
| 121 | iLIF: illumination by Laser-Induced Fluorescence for single flash imaging on a nanoseconds timescale.<br>Experiments in Fluids, 2011, 51, 1283-1289.                                                     | 2.4  | 29        |
| 122 | Droplets, Bubbles and Ultrasound Interactions. Advances in Experimental Medicine and Biology, 2016, 880, 157-174.                                                                                        | 1.6  | 28        |
| 123 | Cleaning lateral morphological features of the root canal: the role of streaming and cavitation.<br>International Endodontic Journal, 2018, 51, e55-e64.                                                 | 5.0  | 27        |
| 124 | Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism.<br>Biomaterials, 2019, 217, 119250.                                                                          | 11.4 | 27        |
| 125 | Acoustic measurement of bubble size in an inkjet printhead. Journal of the Acoustical Society of America, 2009, 126, 2184-2190.                                                                          | 1.1  | 26        |
| 126 | Contrast agent response to chirp reversal: simulations, optical observations, and acoustical verification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1199-1206. | 3.0  | 26        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles. Physical Review Applied, 2016, 6, .                                                                                                            | 3.8 | 26        |
| 128 | Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model. Journal of Vascular Surgery, 2017, 66, 1844-1853.                                 | 1.1 | 26        |
| 129 | Effect of an entrained air bubble on the acoustics of an ink channel. Journal of the Acoustical Society of America, 2008, 123, 2496-2505.                                                                                           | 1.1 | 24        |
| 130 | Microfluidics control the ballistic energy of thermocavitation liquid jets for needle-free injections.<br>Journal of Applied Physics, 2020, 127, .                                                                                  | 2.5 | 24        |
| 131 | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach. International Endodontic Journal, 2021, 54, 427-438. | 5.0 | 23        |
| 132 | Laser-induced fluorescence imaging in a 100 kW natural gas flame. Applied Physics B: Lasers and Optics, 1992, 55, 164-170.                                                                                                          | 2.2 | 22        |
| 133 | Microdroplet nucleation by dissolution of a multicomponent drop in a host liquid. Journal of Fluid Mechanics, 2019, 870, 217-246.                                                                                                   | 3.4 | 22        |
| 134 | Meta-analysis of Individual Patient Data After Kissing Stent Treatment for Aortoiliac Occlusive<br>Disease. Journal of Endovascular Therapy, 2019, 26, 31-40.                                                                       | 1.5 | 22        |
| 135 | The resonance frequency of SonoVue as observed by high-speed optical imaging. , 0, , .                                                                                                                                              |     | 20        |
| 136 | Acoustic Sizing of an Ultrasound Contrast Agent. Ultrasound in Medicine and Biology, 2010, 36, 1713-1721.                                                                                                                           | 1.5 | 20        |
| 137 | Oscillation characteristics of endodontic files: numerical model and its validation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2448-59.                                                    | 3.0 | 20        |
| 138 | Foam-free monodisperse lipid-coated ultrasound contrast agent synthesis by flow-focusing through multi-gas-component microbubble stabilization. Applied Physics Letters, 2020, 116, .                                               | 3.3 | 20        |
| 139 | Bubble size prediction in co-flowing streams. Europhysics Letters, 2011, 94, 64001.                                                                                                                                                 | 2.0 | 19        |
| 140 | Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems. Perfusion (United Kingdom), 2018, 33, 16-24.                                          | 1.0 | 19        |
| 141 | Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO.<br>Applied Optics, 1991, 30, 5229.                                                                                              | 2.1 | 18        |
| 142 | Leaping shampoo and the stable Kaye effect. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P07007-P07007.                                                                                                     | 2.3 | 18        |
| 143 | Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel. Journal of Applied Physics, 2011, 110, 034503.                                                                         | 2.5 | 18        |
| 144 | Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects. Biomicrofluidics, 2018, 12, 034109.                                    | 2.4 | 18        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | High-Frame-Rate Contrast-enhanced US Particle Image Velocimetry in the Abdominal Aorta: First Human<br>Results. Radiology, 2018, 289, 119-125.                                                            | 7.3 | 18        |
| 146 | High-Frame-Rate Contrast-Enhanced Ultrasound for Velocimetry in the Human Abdominal Aorta. IEEE<br>Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2245-2254.               | 3.0 | 18        |
| 147 | Influence of the Dentinal Wall on the pH of Sodium Hypochlorite during Root Canal Irrigation.<br>Journal of Endodontics, 2014, 40, 1005-1008.                                                             | 3.1 | 17        |
| 148 | Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. PLoS ONE, 2017, 12, e0180747.                                              | 2.5 | 17        |
| 149 | Correspondence - Nonlinear oscillations of deflating bubbles. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2012, 59, 2818-24.                                              | 3.0 | 16        |
| 150 | Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug<br>Delivery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 570-581. | 3.0 | 16        |
| 151 | Inkjet Nozzle Failure by Heterogeneous Nucleation: Bubble Entrainment, Cavitation, and Diffusive<br>Growth. Physical Review Applied, 2019, 12, .                                                          | 3.8 | 16        |
| 152 | Feedback-controlled microbubble generator producing one million monodisperse bubbles per second.<br>Review of Scientific Instruments, 2021, 92, 035110.                                                   | 1.3 | 16        |
| 153 | Rayleigh–Taylor instability by segregation in an evaporating multicomponent microdroplet. Journal of<br>Fluid Mechanics, 2020, 899, .                                                                     | 3.4 | 15        |
| 154 | Secondary Tail Formation and Breakup in Piezoacoustic Inkjet Printing: Femtoliter Droplets Captured in Flight. Physical Review Applied, 2020, 13, .                                                       | 3.8 | 15        |
| 155 | Temperature evolution of preheated irrigant injected into a root canal ex vivo. Clinical Oral<br>Investigations, 2017, 21, 2841-2850.                                                                     | 3.0 | 13        |
| 156 | Nonaxisymmetric Effects in Drop-On-Demand Piezoacoustic Inkjet Printing. Physical Review Applied, 2020, 13, .                                                                                             | 3.8 | 13        |
| 157 | The retraction of jetted slender viscoelastic liquid filaments. Journal of Fluid Mechanics, 2021, 929, .                                                                                                  | 3.4 | 13        |
| 158 | Laser-activated microparticles for multimodal imaging: ultrasound and photoacoustics. Physics in<br>Medicine and Biology, 2019, 64, 034001.                                                               | 3.0 | 12        |
| 159 | Evaporation-Induced Crystallization of Surfactants in Sessile Multicomponent Droplets. Langmuir, 2020, 36, 7545-7552.                                                                                     | 3.5 | 12        |
| 160 | Impulse response method for characterization of echogenic liposomes. Journal of the Acoustical Society of America, 2015, 137, 1693-1703.                                                                  | 1.1 | 11        |
| 161 | Partial renal coverage in endovascular aneurysm repair causes unfavorable renal flow patterns in an infrarenal aneurysm model. Journal of Vascular Surgery, 2018, 67, 1585-1594.                          | 1.1 | 11        |
| 162 | Shortwave infrared imaging setup to study entrained air bubble dynamics in a MEMS-based piezo-acoustic inkjet printhead. Experiments in Fluids, 2019, 60, 1.                                              | 2.4 | 11        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Degenerate four-wave mixing with a tunable excimer laser. Applied Optics, 1994, 33, 3289.                                                                                                                              | 2.1  | 10        |
| 164 | Ballistic energy conversion: physical modeling and optical characterization. Nano Energy, 2016, 30, 252-259.                                                                                                           | 16.0 | 10        |
| 165 | High-Frequency Acoustic Droplet Vaporization is Initiated by Resonance. Physical Review Letters, 2021, 126, 034501.                                                                                                    | 7.8  | 10        |
| 166 | Microbubble surface modes. , 0, , .                                                                                                                                                                                    |      | 9         |
| 167 | Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Physics in Medicine and Biology, 2016, 61, 8321-8339.                                                                                               | 3.0  | 9         |
| 168 | The laser induced fluorescence spectrum of SiF around 193 nm. Journal of Molecular Spectroscopy, 1991, 149, 329-340.                                                                                                   | 1.2  | 8         |
| 169 | Intracavity C atom absorption in the tuning range of the ArF excimer laser. Journal of Chemical Physics, 1992, 96, 3350-3351.                                                                                          | 3.0  | 8         |
| 170 | Brandaris 128: a rotating-mirror digital camera with 128 frames at 25 Mfps. , 2003, 4948, 342.                                                                                                                         |      | 8         |
| 171 | Clinical relevance of pressure-dependent scattering at low acoustic pressures. Ultrasonics, 2007, 47, 74-77.                                                                                                           | 3.9  | 8         |
| 172 | Study of the geometry in a 3D flow-focusing device. Microfluidics and Nanofluidics, 2016, 20, 1.                                                                                                                       | 2.2  | 8         |
| 173 | A novel roller pump for physiological flow. Artificial Organs, 2020, 44, 818-826.                                                                                                                                      | 1.9  | 8         |
| 174 | Root Canal Irrigation. Springer Series on Biofilms, 2015, , 259-301.                                                                                                                                                   | 0.1  | 8         |
| 175 | 9B-1 Coupled Dynamics of an Isolated UCA Microbubble Pair. Proceedings IEEE Ultrasonics Symposium, 2007, , .                                                                                                           | 0.0  | 7         |
| 176 | High Speed Imaging of 1 MHz Driven Microbubbles in Contact with a Rigid Wall. Solid State Phenomena,<br>0, 145-146, 7-10.                                                                                              | 0.3  | 7         |
| 177 | Irrigant transport into dental microchannels. Microfluidics and Nanofluidics, 2013, 16, 1165.                                                                                                                          | 2.2  | 7         |
| 178 | Influence of Iliac Stenotic Lesions on Blood Flow Patterns Near a Covered Endovascular<br>Reconstruction of the Aortic Bifurcation (CERAB) Stent Configuration. Journal of Endovascular<br>Therapy, 2017, 24, 800-808. | 1.5  | 7         |
| 179 | Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study.<br>Journal of the Acoustical Society of America, 2017, 141, 2727-2745.                                                 | 1.1  | 7         |
| 180 | Matrix 3D ultrasound-assisted thyroid nodule volume estimation and radiofrequency ablation: a phantom study. European Radiology Experimental, 2021, 5, 31.                                                             | 3.4  | 7         |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Ultrasound-induced coalescence of free gas microbubbles. , 0, , .                                                                                                                                                               |     | 6         |
| 182 | 1B-5 Surface Modes of Ultrasound Contrast Agent Microbubbles. , 2006, , .                                                                                                                                                       |     | 6         |
| 183 | 9B-3 Orthogonal Observations of Vibrating Microbubbles. Proceedings IEEE Ultrasonics Symposium, 2007, , .                                                                                                                       | 0.0 | 6         |
| 184 | Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study. Journal of the Acoustical Society of America, 2017, 141, 4832-4846.                                                                            | 1.1 | 6         |
| 185 | Fast and Highâ€Resolution Ultrasound Pressure Field Mapping Using Luminescent Membranes. Advanced<br>Optical Materials, 2021, 9, 2100085.                                                                                       | 7.3 | 6         |
| 186 | Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: InÂVitro Feasibility.<br>Biophysical Journal, 2017, 112, 1894-1907.                                                                                 | 0.5 | 5         |
| 187 | Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target. Review of Scientific Instruments, 2017, 88, 095102.                                                                              | 1.3 | 5         |
| 188 | On the dynamics of StemBells: Microbubble-conjugated stem cells for ultrasound-controlled delivery. Applied Physics Letters, 2017, 111, 023701.                                                                                 | 3.3 | 5         |
| 189 | Validation of a Novel Methodology to Evaluate Changes in the Flare Geometry of Renovisceral<br>Bridging Stent-Grafts After Fenestrated Endovascular Aneurysm Repair. Journal of Endovascular<br>Therapy, 2020, 27, 436-444.     | 1.5 | 5         |
| 190 | Hemodynamic Comparison of Stent-Grafts for the Treatment of Aortoiliac Occlusive Disease. Journal of Endovascular Therapy, 2021, 28, 623-635.                                                                                   | 1.5 | 5         |
| 191 | Ultrasound Contrast Agent Microbubble Dynamics. , 2010, , 79-97.                                                                                                                                                                |     | 5         |
| 192 | Microbubbles for Medical Applications. RSC Nanoscience and Nanotechnology, 2014, , 81-101.                                                                                                                                      | 0.2 | 5         |
| 193 | The response of dualâ€species bacterial biofilm to 2% and 5% NaOCl mixed with etidronic acid: A<br>laboratory realâ€ŧime evaluation using optical coherence tomography. International Endodontic<br>Journal, 2022, 55, 758-771. | 5.0 | 5         |
| 194 | Two-Dimensional Two-Phase Water Detection Using a Tunable Excimer Laser. Applied Spectroscopy, 1998, 52, 343-347.                                                                                                               | 2.2 | 4         |
| 195 | Planar Laser-Induced Fluorescence of H20 to Study the Influence of Residual Gases on Cycle-to-Cycle<br>Variations in SI Engines. Combustion Science and Technology, 1998, 132, 75-97.                                           | 2.3 | 4         |
| 196 | Optical investigation of ultrasound induced encapsulated microbubble oscillations: threshold and hysteresis effects. , 0, , .                                                                                                   |     | 4         |
| 197 | Redox control of capillary filling speed in poly(ferrocenylsilane)-modified microfluidic channels for switchable delay valves. European Polymer Journal, 2016, 83, 507-516.                                                     | 5.4 | 4         |
| 198 | The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study. Journal of Endovascular Therapy, 2017, 24, 677-687.                                            | 1.5 | 4         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Assessment of changes in stent graft geometry after chimney endovascular aneurysm sealing. Journal of Vascular Surgery, 2019, 70, 1754-1764.                                                    | 1.1 | 4         |
| 200 | US Velocimetry in Participants with Aortoiliac Occlusive Disease. Radiology, 2021, 301, 332-338.                                                                                                | 7.3 | 4         |
| 201 | Vibrating microbubbles at low acoustic pressures. , 0, , .                                                                                                                                      |     | 4         |
| 202 | Rayleigh–Taylor instability by segregation in an evaporating multicomponent microdroplet –<br>ERRATUM. Journal of Fluid Mechanics, 2021, 908, .                                                 | 3.4 | 4         |
| 203 | Time-resolved absolute radius estimation of vibrating contrast microbubbles using an acoustical camera. Journal of the Acoustical Society of America, 2022, 151, 3993-4003.                     | 1.1 | 4         |
| 204 | High-frame-rate contrast-enhanced ultrasound particle image velocimetry in patients with a stented superficial femoral artery: a feasibility study. European Radiology Experimental, 2022, 6, . | 3.4 | 4         |
| 205 | Remote manipulation of cells with ultrasound and microbubbles. , 0, , .                                                                                                                         |     | 3         |
| 206 | Acoustical and optical characterization of air entrapment in piezo-driven inkjet printheads. , 0, , .                                                                                           |     | 3         |
| 207 | High Speed Optical observations of Contrast Agent dynamics and Breakage. AIP Conference Proceedings, 2005, , .                                                                                  | 0.4 | 3         |
| 208 | Mie scattering of a Laguerre-Gaussian beam for position detection of microbubbles. , 2008, , .                                                                                                  |     | 3         |
| 209 | Segmented high speed imaging of vibrating microbubbles during long ultrasound pulses. , 2012, , .                                                                                               |     | 3         |
| 210 | Combined optical sizing and acoustical characterization of single freely-floating microbubbles.<br>Applied Physics Letters, 2016, 109, .                                                        | 3.3 | 3         |
| 211 | Haemodynamics in Different Flow Lumen Configurations of Customised Aortic Repair for Infrarenal<br>Aortic Aneurysms. European Journal of Vascular and Endovascular Surgery, 2019, 57, 709-718.  | 1.5 | 3         |
| 212 | Three-phase vaporization theory for laser-activated microcapsules. Photoacoustics, 2020, 19, 100185.                                                                                            | 7.8 | 3         |
| 213 | Multi-timescale Microscopy Methods for the Characterization of Fluorescently-labeled Microbubbles<br>for Ultrasound-Triggered Drug Release. Journal of Visualized Experiments, 2021, , .        | 0.3 | 3         |
| 214 | The Supera Interwoven Nitinol Stent as a Flow Diverting Device in Popliteal Aneurysms.<br>CardioVascular and Interventional Radiology, 2022, 45, 858-866.                                       | 2.0 | 3         |
| 215 | Irrigant flow in the root canal during ultrasonic activation: A numerical fluid–structure interaction model and its validation. International Endodontic Journal, 2022, 55, 938-949.            | 5.0 | 3         |
| 216 | Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers. , 2006, , .                                                        |     | 2         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | P2A-1 Threshold Behavior of Vibrating Microbubbles. , 2006, , .                                                                                                                                                           |     | 2         |
| 218 | Ultrasound-triggered local release of lipophilic drugs from a novel polymeric ultrasound contrast<br>agent. Journal of Controlled Release, 2008, 132, e41-e42.                                                            | 9.9 | 2         |
| 219 | Subharmonic spectroscopy of ultrasound contrast agents. , 2010, , .                                                                                                                                                       |     | 2         |
| 220 | Probing microbubble adhesion using secondary acoustic radiation force. , 2011, , .                                                                                                                                        |     | 2         |
| 221 | Liposome shedding from a vibrating microbubble on nanoseconds timescale. , 2013, , .                                                                                                                                      |     | 2         |
| 222 | Experimental Techniques for Retrieving Flow Information from within Inkjet Nozzles. Journal of<br>Imaging Science and Technology, 2016, 60, 405021-4050214.                                                               | 0.5 | 2         |
| 223 | The Role of Irrigation in Endodontics. , 2016, , 45-69.                                                                                                                                                                   |     | 2         |
| 224 | 10.1063/1.3227903.1., 2009, , .                                                                                                                                                                                           |     | 2         |
| 225 | In vitro high-frame-rate contrast-enhanced ultrasound particle image velocimetry in a carotid artery stent. , 2018, , .                                                                                                   |     | 2         |
| 226 | Time-resolved velocity and pressure field quantification in a flow-focusing device for ultrafast microbubble production. Physical Review Fluids, 2021, 6, .                                                               | 2.5 | 2         |
| 227 | Resonance behavior of a compliant piezo-driven inkjet channel with an entrained microbubble. Journal of the Acoustical Society of America, 2022, 151, 2545-2557.                                                          | 1.1 | 2         |
| 228 | Laser-Induced Fluorescence Detection of OH in a Flame Near 268 nm. Journal of Molecular<br>Spectroscopy, 1994, 166, 486-488.                                                                                              | 1.2 | 1         |
| 229 | P1F-2 Acoustical Characterization of Individual Phospholipid-based Ultrasound Contrast Agent<br>Microbubbles. , 2006, , .                                                                                                 |     | 1         |
| 230 | 1F-2 Optical Trapping of Ultrasound Contrast Agent Microbubbles: Study of the Bubble-Wall and Bubble-Bubble Interaction in Ultrasound. , 2006, , .                                                                        |     | 1         |
| 231 | 2C-4 Chirp Reversal Ultrasound Contrast Imaging. , 2006, , .                                                                                                                                                              |     | 1         |
| 232 | Secondary Bjerknes forces deform targeted microbubbles. , 2012, , .                                                                                                                                                       |     | 1         |
| 233 | Brandaris Ultra High-Speed Imaging Facility. , 2018, , 49-77.                                                                                                                                                             |     | 1         |
| 234 | First-in-human Results of Ultrasound Velocimetry for Visualization of Blood Flow Patterns in<br>Patients with Peripheral Arterial Disease. European Journal of Vascular and Endovascular Surgery,<br>2019, 58, e805-e806. | 1.5 | 1         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Time-resolved high-speed fluorescence imaging of bubble-induced sonoporation Proceedings of Meetings on Acoustics, 2013, , .                                                                              | 0.3 | 1         |
| 236 | Evaluation of Liposome-Loaded Microbubbles as a Theranostic Tool in a Murine Collagen-Induced Arthritis Model. Scientia Pharmaceutica, 2022, 90, 17.                                                      | 2.0 | 1         |
| 237 | Computational Fluid Dynamics for the Prediction of Endograft Thrombosis in the Superficial Femoral<br>Artery. Journal of Endovascular Therapy, 2023, 30, 615-627.                                         | 1.5 | 1         |
| 238 | Blood Flow Quantification with High-Frame-Rate, Contrast-Enhanced Ultrasound Velocimetry in<br>Stented Aortoiliac Arteries: In Vivo Feasibility. Ultrasound in Medicine and Biology, 2022, 48, 1518-1527. | 1.5 | 1         |
| 239 | A theoretical framework for acoustically produced luminescence: From thermometry to ultrasound pressure field mapping. Journal of Luminescence, 2022, 248, 118940.                                        | 3.1 | 1         |
| 240 | Observations of radiations forces effects on individual air bubbles with high speed photography. , 0, ,                                                                                                   |     | 0         |
| 241 | Air bubble in an ultrasound field: theoretical and optical results. , 0, , .                                                                                                                              |     | Ο         |
| 242 | Highly non-linear contrast agent oscillations: the compression-only behavior. , 0, , .                                                                                                                    |     | 0         |
| 243 | Microbubbles Reforming Endothelium. AIP Conference Proceedings, 2006, , .                                                                                                                                 | 0.4 | Ο         |
| 244 | P5B-4 Optimization of Chirp Reversal for Ultrasound Contrast Imaging. Proceedings IEEE Ultrasonics<br>Symposium, 2007, , .                                                                                | 0.0 | 0         |
| 245 | Oil-filled polymeric ultrasound contrast agent as local drug delivery system for lipophilic drugs. ,<br>2008, , .                                                                                         |     | Ο         |
| 246 | I05â€Changes in iron concentrations in Huntington's disease. Journal of Neurology, Neurosurgery and<br>Psychiatry, 2010, 81, A37.1-A37.                                                                   | 1.9 | 0         |
| 247 | High field clinical MRI neuroimaging. , 2010, , .                                                                                                                                                         |     | 0         |
| 248 | Optical characterization of individual liposome-loaded microbubbles. , 2011, , .                                                                                                                          |     | 0         |
| 249 | Characterizing ultrasound-controlled drug release by high-speed fluorescence imaging. , 2012, , .                                                                                                         |     | Ο         |
| 250 | Characterization of microbubble-loaded stem cells for targeted cell therapy. , 2013, , .                                                                                                                  |     | 0         |
| 251 | Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. Proceedings of Meetings on Acoustics, 2013, , .                                                                            | 0.3 | 0         |
| 252 | Nonlinear dynamics of single freely-floating microbubbles under prolonged insonation. , 2014, , .                                                                                                         |     | 0         |

| #   | Article                                                                                                                                                                | IF  | CITATION |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 253 | Insights into Acoustically Induced PiezoLuminescence: The Visualization of Ultrasonic Beam Patterns.<br>Proceedings (mdpi), 2018, 2, .                                 | 0.2 | 0        |
| 254 | Visualization of Blood Flow in the Diseased Aorto-Iliac Tract With Ultrasound Velocimetry: First in<br>Human Results. EJVES Vascular Forum, 2020, 48, 45-46.           | 0.4 | 0        |
| 255 | Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular<br>Surgery. Surgical Technology International, 0, , .             | 0.2 | 0        |
| 256 | Optical micromanipulation and force spectroscopy of ultrasound contrast microbubbles for targeted molecular imaging. , 2007, , .                                       |     | 0        |
| 257 | Acoustic bubble sorting of ultrasound contrast agents. Proceedings of Meetings on Acoustics, 2013, ,                                                                   | 0.3 | 0        |
| 258 | Abstract B151: Exploring the induction of immunogenic cell death (ICD) by high-intensity focused ultrasound (HIFU). , 2019, , .                                        |     | 0        |
| 259 | Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular<br>Surgery. Surgical Technology International, 2021, 38, 294-304. | 0.2 | Ο        |