Ted I E Veldkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494589/publications.pdf

Version: 2024-02-01

38 papers

2,461 citations

257450 24 h-index 315739 38 g-index

52 all docs 52 docs citations

times ranked

52

2916 citing authors

#	Article	IF	CITATIONS
1	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	18.8	345
2	Water shortages worsened by reservoir effects. Nature Sustainability, 2018, 1, 617-622.	23.7	213
3	Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts. Environment and Development Economics, 2018, 23, 328-348.	1.5	153
4	Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environmental Research Letters, 2018, 13, 084012.	5.2	152
5	Review article: Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 2020, 20, 1069-1096.	3.6	132
6	Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Natural Hazards and Earth System Sciences, 2020, 20, 489-504.	3.6	127
7	Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 2015, 32, 18-29.	7.8	112
8	The critical role of the routing scheme in simulating peak river discharge in global hydrological models. Environmental Research Letters, 2017, 12, 075003.	5.2	105
9	A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C. Climatic Change, 2017, 141, 577-595.	3.6	104
10	Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environmental Research Letters, 2018, 13, 055008.	5.2	91
11	Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.	5.2	85
12	The need to integrate flood and drought disaster risk reduction strategies. Water Security, 2020, 11, 100070.	2.5	83
13	The effect of climate type on timescales of drought propagation in an ensemble of global hydrological models. Hydrology and Earth System Sciences, 2018, 22, 4649-4665.	4.9	70
14	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	6.3	69
15	Role of economic instruments in water allocation reform: lessons from Europe. International Journal of Water Resources Development, 2019, 35, 206-239.	2.0	66
16	Assessment of the effectiveness of flood adaptation strategies for HCMC. Natural Hazards and Earth System Sciences, 2014, 14, 1441-1457.	3.6	59
17	A Continentalâ€Scale Hydroeconomic Model for Integrating Waterâ€Energyâ€Land Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	4.2	57
18	Exposure to Floods, Climate Change, and Poverty in Vietnam. Economics of Disasters and Climate Change, 2019, 3, 79-99.	2.2	51

#	Article	IF	CITATIONS
19	Future Transboundary Water Stress and Its Drivers Under Climate Change: A Global Study. Earth's Future, 2020, 8, e2019EF001321.	6.3	48
20	Integrating human behavior dynamics into drought risk assessment—A sociohydrologic, agentâ€based approach. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1345.	6.5	42
21	Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale. Hydrology and Earth System Sciences, 2015, 19, 4081-4098.	4.9	32
22	Impact of precipitation and increasing temperatures on drought trends in eastern Africa. Earth System Dynamics, 2021, 12, 17-35.	7.1	32
23	A Spatially Explicit Assessment of Growing Water Stress in China From the Past to the Future. Earth's Future, 2019, 7, 1027-1043.	6.3	27
24	Achieving the reduction of disaster risk by better predicting impacts of El Niñ0 and La Niña. Progress in Disaster Science, 2019, 2, 100022.	2.7	27
25	Financing agricultural drought risk through ex-ante cash transfers. Science of the Total Environment, 2019, 653, 523-535.	8.0	25
26	The influence of antecedent conditions on flood risk in sub-Saharan Africa. Natural Hazards and Earth System Sciences, 2018, 18, 271-285.	3.6	20
27	Cross-border climate vulnerabilities of the European Union to drought. Nature Communications, 2021, 12, 3322.	12.8	20
28	Simulating Small-Scale Agricultural Adaptation Decisions in Response to Drought Risk: An Empirical Agent-Based Model for Semi-Arid Kenya. Frontiers in Water, 2020, 2, .	2.3	18
29	Global River Discharge and Floods in the Warmer Climate of the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL089375.	4.0	18
30	Assessing time, cost and quality trade-offs in forecast-based action for floods. International Journal of Disaster Risk Reduction, 2019, 40, 101252.	3.9	17
31	The potential of global reanalysis datasets in identifying flood events in Southern Africa. Hydrology and Earth System Sciences, 2018, 22, 4667-4683.	4.9	14
32	Surface Runoff and Drought Assessment Using Global Water Resources Datasets - from Oum Er Rbia Basin to the Moroccan Country Scale. Water Resources Management, 2020, 34, 2117-2133.	3.9	14
33	A global-scale evaluation of extreme event uncertainty in the <i>eartH2Observe</i> project. Hydrology and Earth System Sciences, 2020, 24, 75-92.	4.9	6
34	Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change. Natural Hazards and Earth System Sciences, 2022, 22, 1201-1232.	3.6	6
35	The Benefit of Using an Ensemble of Global Hydrological Models in Surface Water Availability for Irrigation Area Planning. Water Resources Management, 2020, 34, 2221-2240.	3.9	3
36	From Pilot Projects to Transformative Infrastructures, Exploring Market Receptivity for Permeable Pavement in The Netherlands. Sustainability, 2021, 13, 4925.	3.2	2

#	Article	IF	CITATIONS
37	Unlocking the Potential of Permeable Pavements in Practice: A Large-Scale Field Study of Performance Factors of Permeable Pavements in The Netherlands. Water (Switzerland), 2022, 14, 2080.	2.7	2
38	Review article: Natural hazard risk assessments at the global scale. , 0, , .		0