
Neerish Revaprasadu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/349456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular precursor route for the phase selective synthesis of α-MnS or metastable γ-MnS nanomaterials for magnetic studies and deposition of thin films by AACVD. Materials Science in Semiconductor Processing, 2022, 139, 106330.	1.9	4
2	Surface Engineered Peroxidase-Mimicking Gold Nanoparticles to Subside Cell Inflammation. Langmuir, 2022, 38, 1877-1887.	1.6	15
3	Phase transformations in the nickel phosphide system induced by transition-metal doping and their electro-catalytic study. Sustainable Energy and Fuels, 2022, 6, 1319-1331.	2.5	7
4	Tuning composition of CuCo ₂ S ₄ –NiCo ₂ S ₄ solid solutions <i>via</i> solvent-less pyrolysis of molecular precursors for efficient supercapacitance and water splitting. RSC Advances, 2022, 12, 10675-10685.	1.7	14
5	Nickel chalcogenide thin films and nanoparticles from molecular single-source precursors. , 2022, , 281-310.		0
6	Preparation of spin coated PbS thin films using bis-tetrahydroquinolinedithiocarbamatolead(II) complex as a single source precursor. Inorganic and Nano-Metal Chemistry, 2022, 52, 1019-1023.	0.9	3
7	Precursor Engineering for the Synthesis of Mixed Anionic Metal (Cu, Mn) Chalcogenide Nanomaterials via Solvent-Less Synthesis. Inorganic Chemistry, 2022, , .	1.9	0
8	Coordination Complexes as Precursors for Semiconductor Thin Films and Nanoparticles. , 2021, , 465-493.		0
9	Synthesis of CdS and PbS nanoparticles by the thermal decomposition of ethyl xanthate complexes in castor oil using the heat-up technique. Materials Science in Semiconductor Processing, 2021, 122, 105493.	1.9	6
10	Synergistically enhanced performance of transition-metal doped Ni ₂ P for supercapacitance and overall water splitting. Dalton Transactions, 2021, 50, 11821-11833.	1.6	25
11	Selective Synthesis of Bismuth or Bismuth Selenide Nanosheets from a Metal Organic Precursor: Investigation of their Catalytic Performance for Water Splitting. Inorganic Chemistry, 2021, 60, 1449-1461.	1.9	28
12	Solventless synthesis of nanospinel Ni _{1â[°]<i>x</i>} Co _{<i>x</i>} Fe ₂ O ₄ (0 ≤i>x ≤) solid solutions for efficient electrochemical water splitting and supercapacitance. RSC Advances, 2021, 11, 31002-31014.	1.7	17
13	Colloidal synthesis of metal chalcogenide nanomaterials from metal–organic precursors and capping ligand effect on electrocatalytic performance: progress, challenges and future perspectives. Dalton Transactions, 2021, 50, 11347-11359.	1.6	23
14	Crystal structures and physicochemical studies of some novel divalent and trivalent transition metal chelates of N-morpholine-N'-benzoylthiourea. Journal of Molecular Structure, 2021, 1229, 129791.	1.8	8
15	Comparative study on the effect of precursors on the morphology and electronic properties of CdS nanoparticles. Turkish Journal of Chemistry, 2021, 45, 400-409.	0.5	1
16	Understanding Zones of Molecular Dimension in Poly (Lactic Acid) Composites through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: Correlation with Tensile Yield Test Measurements. Materials Performance and Characterization, 2021, 10, 489-502.	0.2	0
17	Triphenylphosphine-Assisted Transformation of NiS to Ni ₂ P through a Solvent-Less Pyrolysis Route: Synthesis and Electrocatalytic Performance. Inorganic Chemistry, 2021, 60, 11374-11384.	1.9	5
18	Single precursor-based synthesis of transition metal sulfide nanoparticles and evaluation of their antimicrobial, antioxidant and cytotoxic potentials. Applied Nanoscience (Switzerland), 2021, 11, 2489-2502.	1.6	21

#	Article	IF	CITATIONS
19	Low temperature scalable synthetic approach enabling high bifunctional electrocatalytic performance of NiCo ₂ S ₄ and CuCo ₂ S ₄ thiospinels. RSC Advances, 2021, 11, 31533-31546.	1.7	6
20	ZnCr-CO3 LDH/ruptured tubular g-C3N4 composite with increased specific surface area for enhanced photoelectrochemical water splitting. Applied Surface Science, 2020, 508, 145100.	3.1	48
21	Controlled Synthesis of Sb ₂ (S _{1–<i>x</i>} Se _{<i>x</i>}) ₃ (0 ≤i>x ≤) Solid Solution and the Effect of Composition Variation on Electrocatalytic Energy Conversion and Storage. ACS Applied Energy Materials, 2020, 3, 1448-1460.	2.5	31
22	Flexible Molecular Precursors for Selective Decomposition to Nickel Sulfide or Nickel Phosphide for Water Splitting and Supercapacitance. Chemistry - A European Journal, 2020, 26, 2693-2704.	1.7	30
23	Unusual doping induced phase transitions in NiS <i>via</i> solventless synthesis enabling superior bifunctional electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 5132-5143.	2.5	18
24	Bioinspired Synthesis of Acacia senegal Leaf Extract Functionalized Silver Nanoparticles and Its Antimicrobial Evaluation. Journal of Nanomaterials, 2020, 2020, 1-8.	1.5	5
25	Co-assembled ZnO-Fe ₂ O _{3x} -CuO _x nano-oxide materials for antibacterial protection. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 981-987.	0.8	3
26	Direct solvent free synthesis of bare α-NiS, β-NiS and α-β-NiS composite as excellent electrocatalysts: Effect of self-capping on supercapacitance and overall water splitting activity. Scientific Reports, 2020, 10, 3260.	1.6	73
27	Cobalt sulfide nanoparticles: Synthesis, water splitting and supercapacitance studies. Materials Science in Semiconductor Processing, 2020, 109, 104925.	1.9	29
28	A facile approach to synthesis graphene oxide/bismuth oxide nanocomposites and their superior sunlight driven photocatalytic activity. Optik, 2019, 197, 163035.	1.4	10
29	Cytotoxicity and in vitro evaluation of whey protein-based hydrogels for diabetes mellitus treatment. International Journal of Industrial Chemistry, 2019, 10, 213-223.	3.1	2
30	Morphological influence of deposition routes on lead sulfide thin films. Inorganica Chimica Acta, 2019, 498, 119116.	1.2	7
31	Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation. Solar Energy, 2019, 193, 403-412.	2.9	55
32	Cadmium Chloride and Cadmium Iodide Thiosemicarbazone Complexes as Single Source Precursors for CdS Nanoparticles. Russian Journal of Inorganic Chemistry, 2019, 64, 1063-1071.	0.3	5
33	Metal selenobenzoate complexes: Novel single source precursors for the synthesis of metal selenide semiconductor nanomaterials. Materials Today: Proceedings, 2019, 10, 66-74.	0.9	11
34	Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chemistry, 2019, 21, 1186-1201.	4.6	75
35	Synthesis of (Bi _{1â^'x} Sb _x) ₂ S ₃ solid solutions <i>via</i> thermal decomposition of bismuth and antimony piperidinedithiocarbamates. RSC Advances, 2019, 9, 15836-15844.	1.7	14
36	A Facile Green Synthesis of Ultranarrow PbS Nanorods. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2274-2281.	1.9	3

#	Article	IF	CITATIONS
37	Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Advances, 2019, 9, 7729-7736.	1.7	71
38	3D hybrid perovskite solid solutions: a facile approach for deposition of nanoparticles and thin films <i>via</i> B-site substitution. New Journal of Chemistry, 2019, 43, 5448-5454.	1.4	5
39	The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. Journal of Materials Research and Technology, 2019, 8, 2021-2030.	2.6	78
40	Synthesis of Off‣toichiometric CoS Nanoplates from a Molecular Precursor for Efficient H ₂ /O ₂ Evolution and Supercapacitance. ChemElectroChem, 2019, 6, 2560-2569.	1.7	40
41	Electrochemical investigation of uncapped AgBiS ₂ (schapbachite) synthesized using <i>in situ</i> melts of xanthate precursors. Dalton Transactions, 2019, 48, 3714-3722.	1.6	34
42	Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials. Coordination Chemistry Reviews, 2019, 388, 24-47.	9.5	50
43	Important Phase Control of Indium Sulfide Nanomaterials by Choice of Indium(III) Xanthate Precursor and Thermolysis Temperature. European Journal of Inorganic Chemistry, 2019, 2019, 1421-1432.	1.0	11
44	Phase transition in Cu _{2+x} SnS _{3+y} (0 ≤i>x≤; 0 ≤i>y≤1) ternary systems synthesized from complexes of coumarin derived thiocarbamate motifs: optical and morphological properties. RSC Advances, 2019, 9, 35706-35716.	1.7	16
45	Tailoring Shape and Crystallographic Phase of Copper Sulfide Nanostructures Using Novel Thiourea Complexes as Single Source Precursors. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 917-927.	1.9	7
46	Tannic acid-derivatized graphitic carbon nitride quantum dots as an "on-off-on―fluorescent nanoprobe for ascorbic acid via copper(II) mediation. Mikrochimica Acta, 2019, 186, 87.	2.5	25
47	Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: A Tool to Determine Reinforcement of Carbon Black in Polylactic Acid Composites. Materials Performance and Characterization, 2019, 8, 20190146.	0.2	4
48	Crystal structure of 4-ethylpiperazine-1-carbothioic dithioperoxyanhydride, C ₁₄ H ₂₆ N ₄ S ₄ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 1035-1036.	0.1	0
49	Preparation of Iron Sulfide Nanomaterials from Iron(II) Thiosemicarbazone Complexes and Their Application in Photodegradation of Methylene Blue. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 603-611.	1.9	9
50	Phase pure Ni ₃ S ₂ and NiS from bis(<i>N</i> ′-ethyl- <i>N</i> -piperazinylcarbodithioato- <i>S</i> , <i>S</i> ′)–nickel(<scp>ii</scp>) <i>via</i> solvent thermolysis and aerosol assisted chemical vapour deposition. New Journal of Chemistry, 2018, 42, 6203-6209.	1.4	18
51	Heterocyclic lead(II) thioureato complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorganica Chimica Acta, 2018, 479, 42-48.	1.2	17
52	Castor oil and olive oil-capped In 2 S 3 and CuInS 2 nanoparticles from xanthate complexes. Materials Science in Semiconductor Processing, 2018, 76, 73-79.	1.9	5
53	New Examples of Phase Control in the Preparation of Copper Sulfide Nanoparticles and Deposition of Thin Films by AACVD from Bis(piperidinedithiocarbamato)copper(II) Complex. ChemistrySelect, 2018, 3, 2943-2950.	0.7	21
54	Bis(selenobenzoato)dibutyltin(<scp>iv</scp>) as a single source precursor for the synthesis of SnSe nanosheets and their photo-electrochemical study for water splitting. Dalton Transactions, 2018, 47, 5465-5473.	1.6	44

#	Article	IF	CITATIONS
55	Lead(II) halide cinnamaldehyde thiosemicarbazone complexes as single source precursors for oleylamine-capped lead sulfide nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 1479-1488.	1.1	8
56	PbS x Se1â^'x thin films from the thermal decomposition of lead(II) dodecylxanthate and bis(N,N-diethyl-N′-naphthoylselenoureato)lead(II) precursors. Journal of Materials Science, 2018, 53, 4283-4293.	1.7	15
57	Synthesis and characterization of PbS nanoparticles in an ionic liquid using single and dual source precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 227, 116-121.	1.7	33
58	Thermolytic synthesis of cobalt and cobalt sulfide nanoparticles using Cobalt(II) N ^ O Schiff base complexes as single molecular precursors. Turkish Journal of Chemistry, 2018, 42, 1224-1237.	0.5	1
59	Band Structure, Morphology, Functionality, and Size- Dependent Properties of Metal Nanoparticles. , 2018, , .		13
60	Ricinoleic Acid as a Green Alternative to Oleic Acid in the Synthesis of Doped Nanocrystals. ChemistrySelect, 2018, 3, 13548-13552.	0.7	2
61	Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride quantum dots as a fluorescent nanoprobe for mercury(II). Mikrochimica Acta, 2018, 185, 461.	2.5	37
62	Broadband emission in a new lead free all-inorganic 3D CsZnCl2I perovskite. New Journal of Chemistry, 2018, 42, 17181-17184.	1.4	15
63	Facile synthesis of a PbS _{1â^'x} Se _x (0 ≤i>x ≤) solid solution using bis(<i>N</i> , <i>N</i> -diethyl- <i>N</i> @€2-naphthoylchalcogenoureato)lead(<scp>ii</scp>) complexes. New Journal of Chemistry, 2018, 42, 16602-16607.	1.4	27
64	Novel single source precursor for synthesis of Sb2Se3 nanorods and deposition of thin films by AACVD: Photo-electrochemical study for water reduction catalysis. Solar Energy, 2018, 169, 526-534.	2.9	62
65	CdS thin films deposition by AACVD: effect of precursor type, decomposition temperature and solvent. Journal of Materials Science: Materials in Electronics, 2018, 29, 14462-14470.	1.1	14
66	Structural investigations of SnS _{1â^'x} Se _x solid solution synthesized from chalcogeno-carboxylate complexes of organo-tin by colloidal and solvent-less routes. Dalton Transactions, 2018, 47, 10025-10034.	1.6	36
67	Fabrication of planar heterojunction CsPbBr ₂ 1 perovskite solar cells using ZnO as an electron transport layer and improved solar energy conversion efficiency. New Journal of Chemistry, 2018, 42, 14104-14110.	1.4	55
68	Deposition of Bi2S3 thin films from heterocyclic bismuth(III) dithiocarbamato complexes. Polyhedron, 2018, 154, 173-181.	1.0	17
69	Effect of cationic disorder on the energy generation and energy storage applications of Ni _x Co _{3â^'x} S ₄ thiospinel. RSC Advances, 2018, 8, 24049-24058.	1.7	29
70	Synthesis of chalcopyrite-type and thiospinel minerals/materials by low temperature melts of xanthates. Dalton Transactions, 2018, 47, 8870-8873.	1.6	31
71	Controlled synthesis of all inorganic CsPbBr 2 I perovskite by non-template and aerosol assisted chemical vapour deposition. Materials Letters, 2017, 190, 244-247.	1.3	29
72	Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Materials Science in Semiconductor Processing, 2017, 63, 6-11.	1.9	26

#	Article	IF	CITATIONS
73	Nanocrystalline and monophasic thin films of metal chalcogenide (FeS, ZnS) and oxide (ZnO) by chemical bath deposition (CBD). Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700008.	0.8	2
74	Fabrication of a Graphene@TiO ₂ @Porphyrin Hybrid Material and Its Photocatalytic Properties under Simulated Sunlight Irradiation. ChemistrySelect, 2017, 2, 3329-3333.	0.7	28
75	Zinc thiosemicarbazone complexes: Single source precursors for alkylamine capped ZnS nanoparticles. Inorganica Chimica Acta, 2017, 463, 7-13.	1.2	26
76	Designing the morphology of PbS nanoparticles through a single source precursor method. Journal of Saudi Chemical Society, 2017, 21, 593-598.	2.4	19
77	A Facile Route to Cesium Lead Bromoiodide Perovskite Microcrystals and Their Potential Application as Sensors for Nitrophenol Explosives. European Journal of Inorganic Chemistry, 2017, 2017, 3755-3760.	1.0	32
78	Optical and gas sensing properties of SnO2 nanowires grown by vapor–liquid–solid mechanism. Journal of Materials Science: Materials in Electronics, 2017, 28, 17993-18002.	1.1	5
79	Synthesis of Hybrid to Inorganic Quasi 2D-Layered Perovskite Nanoparticles. ChemistrySelect, 2017, 2, 5595-5599.	0.7	8
80	Phase pure deposition of flower-like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures. Thin Solid Films, 2017, 638, 338-344.	0.8	33
81	Synthesis of CdS quantum dots in an imidazolium based ionic liquid. Materials Science in Semiconductor Processing, 2017, 71, 258-262.	1.9	10
82	Structural and gas sensing properties of greigite (Fe 3 S 4) and pyrrhotite (Fe 1-x S) nanoparticles. Materials Chemistry and Physics, 2017, 198, 167-176.	2.0	18
83	Synthesis of rare pure phase Ni3S4 and Ni3S2 nanoparticles in different primary amine coordinating solvents. Polyhedron, 2017, 122, 16-24.	1.0	36
84	Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose. Materials, 2017, 10, 1246.	1.3	39
85	Tuning the Phase and Shape of Copper Sulfide Nanostructures Using Mixed Solvent Systems. ChemistrySelect, 2016, 1, 5982-5989.	0.7	23
86	The effect of polyol on multiple ligand capped silver alloyed nanobimetallic particles in tri- <i>n</i> -octylphosphine oxide and oleic acid matrices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 045012.	0.7	2
87	Magnetic Iron Sulfide Nanoparticles for Potential Applications in Gas Sensing. MRS Advances, 2016, 1, 235-240.	0.5	10
88	The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis. International Nano Letters, 2016, 6, 235-242.	2.3	3
89	A chemodosimetric approach for the selective detection of Pb ²⁺ ions using a cesium based perovskite. New Journal of Chemistry, 2016, 40, 9719-9724.	1.4	37
90	Synthesis of PbTe and PbSe nanoparticles under the influence of hydrochloric acid and carbon dioxide. Materials Science in Semiconductor Processing, 2016, 56, 295-301.	1.9	5

#	Article	IF	CITATIONS
91	Heterocyclic Bismuth(III) Dithiocarbamato Complexes as Singleâ€Source Precursors for the Synthesis of Anisotropic Bi ₂ S ₃ Nanoparticles. Chemistry - A European Journal, 2016, 22, 13127-13135.	1.7	27
92	Synthesis and characterization of CdS nanocrystallites and OMWCNT-supported cadmium sulfide composite and their photocatalytic activity under visible light irradiation. Materials Chemistry and Physics, 2016, 183, 366-374.	2.0	16
93	Synthesis of hierarchical PbS nanostructures capped with castor oil. Materials Letters, 2016, 185, 17-20.	1.3	7
94	A facile approach for selective and sensitive detection of aqueous contamination in DMF by using perovskite material. Materials Letters, 2016, 183, 135-138.	1.3	25
95	Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Transactions, 2016, 45, 18803-18812.	1.6	41
96	Preparation of CdS Nanoparticles from Thiosemicarbazone Complexes: Morphological Influence of Chlorido and Iodido Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 366-372.	1.0	26
97	Phase controlled synthesis of copper sulfide nanoparticles by colloidal and non-colloidal methods. Materials Chemistry and Physics, 2016, 180, 404-412.	2.0	14
98	Cadmium sulfide quantum dots stabilized by castor oil and ricinoleic acid. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 76, 95-102.	1.3	13
99	Synthesis and characterization of castor oil and ricinoleic acid capped CdS nanoparticles using single source precursors. Materials Science in Semiconductor Processing, 2016, 43, 230-237.	1.9	30
100	Design, green synthesis, anti-microbial, and anti-oxidant activities of novel <i>α</i> -aminophosphonates via Kabachnik-Fields reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1081-1085.	0.8	25
101	Heterocyclic dithiocarbamato-iron(<scp>iii</scp>) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Transactions, 2016, 45, 2647-2655.	1.6	49
102	Functionalized mesoporous organo-silica nanosorbents for removal of chromium (III) ions from tanneries wastewater. Journal of Porous Materials, 2016, 23, 83-93.	1.3	12
103	The recent developments in nanoparticle synthesis. SPR Nanoscience, 2016, , 57-153.	0.3	3
104	Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization. Nanomaterials, 2015, 5, 1211-1222.	1.9	13
105	A simple route to alkylamine capped antimony nanoparticles. Materials Letters, 2015, 145, 239-242.	1.3	18
106	Synthesis of biocompatible Au–ZnTe core–shell nanoparticles. Journal of Materials Chemistry B, 2015, 3, 2826-2833.	2.9	6
107	Aerosol assisted chemical vapor deposition (AACVD) of CdS thin films from heterocyclic cadmium(II) complexes. Inorganica Chimica Acta, 2015, 434, 181-187.	1.2	26
108	Aerosol assisted chemical vapor deposition of Sb2S3 thin films: Environmentally benign solar energy material. Materials Science in Semiconductor Processing, 2015, 40, 643-649.	1.9	24

#	Article	IF	CITATIONS
109	Deposition of cadmium sulfide and zinc sulfide thin films by aerosol-assisted chemical vapors from molecular precursors. Turkish Journal of Chemistry, 2015, 39, 169-178.	0.5	24
110	CdSe quantum dots capped with naturally occurring biobased oils. New Journal of Chemistry, 2015, 39, 7251-7259.	1.4	25
111	Investigation of PbS nanocrystals sensitized extremely thin absorber (ETA) solar cell. Materials Science in Semiconductor Processing, 2015, 36, 20-26.	1.9	11
112	Facile route to the synthesis and characterization of novel core–shell and Ag/Ru allied nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 71, 70-78.	1.3	6
113	Phase-pure fabrication and shape evolution studies of SnS nanosheets. New Journal of Chemistry, 2015, 39, 9569-9574.	1.4	43
114	Deposition of phase pure nickel sulfide thin films from bis(O-alkylxanthato)–nickel(II) complexes by the aerosol assisted chemical vapour deposition (AACVD) method. Materials Science in Semiconductor Processing, 2015, 30, 368-375.	1.9	16
115	DnaK Protein Alleviates Toxicity Induced by Citrate-Coated Gold Nanoparticles in Escherichia coli. PLoS ONE, 2015, 10, e0121243.	1.1	7
116	Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles. Journal of Materials, 2014, 2014, 1-9.	0.1	5
117	Dialkyldiselenophosphinato-metal complexes – a new class of single source precursors for deposition of metal selenide thin films and nanoparticles. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012019.	0.3	2
118	Evidence of oriented attachment in the growth of functionalized ZnTe nanoparticles for potential applications in bio-imaging. New Journal of Chemistry, 2014, 38, 6002-6007.	1.4	7
119	Bis(piperidinedithiocarbamato)pyridinecadmium(<scp>ii</scp>) as a single-source precursor for the synthesis of CdS nanoparticles and aerosol-assisted chemical vapour deposition (AACVD) of CdS thin films. New Journal of Chemistry, 2014, 38, 6073-6080.	1.4	55
120	Synthesis of Cadmium and Lead Telluride Nanoparticles: Examples of Oriented attachment Growth Mechanism. Materials Research Society Symposia Proceedings, 2014, 1705, 7.	0.1	0
121	Deposition of cobalt and nickel sulfide thin films from thio- and alkylthio-urea complexes as precursors via the aerosol assisted chemical vapour deposition technique. Thin Solid Films, 2014, 564, 51-57.	0.8	27
122	Facile synthesis of phosphine free ultra-small PbSe nanocrystals and their light harvesting studies in ETA solar cells. Dalton Transactions, 2014, 43, 16424-16430.	1.6	6
123	The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA. Colloids and Surfaces B: Biointerfaces, 2014, 121, 425-431.	2.5	12
124	Low temperature synthesis of PbS and CdS nanoparticles in olive oil. Materials Science in Semiconductor Processing, 2014, 27, 191-196.	1.9	21
125	A simple route to Bi2Se3 and Bi2Te3 nanocrystals. Superlattices and Microstructures, 2014, 69, 226-230.	1.4	15
126	The syntheses and structures of Zn(II) heterocyclic piperidine and tetrahydroquinoline dithiocarbamates and their use as single source precursors for ZnS nanoparticles. Polyhedron, 2014, 67, 129-135.	1.0	28

#	Article	IF	CITATIONS
127	A convenient synthesis of antimony sulfide and antimony phosphate nanorods using single source dithiolatoantimony(III) dialkyldithiophosphate precursors. Polyhedron, 2014, 80, 216-222.	1.0	9
128	Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron, 2013, 56, 62-70.	1.0	28
129	A simple route to shape controlled CdS nanoparticles. Journal of Physics and Chemistry of Solids, 2013, 74, 245-249.	1.9	3
130	Shape evolution of PbTe nanostructures using mixed lead sources. Materials Letters, 2013, 97, 108-112.	1.3	1
131	Cysteineâ€capped gold nanoparticles suppress aggregation of proteins exposed to heat stress. IUBMB Life, 2013, 65, 454-461.	1.5	25
132	Lead chalcogenides stabilized by anacardic acid. Materials Science in Semiconductor Processing, 2013, 16, 263-268.	1.9	19
133	Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications. Chemistry of Materials, 2013, 25, 3551-3569.	3.2	129
134	Facile synthesis of cysteine and triethanolamine capped CdTe nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 101, 450-456.	2.5	16
135	A simple route to bismuth nanoparticles in the form of dots, branched nanorods and self assembled cubes. Materials Letters, 2013, 92, 220-223.	1.3	4
136	Volume Editors' Introduction. , 2013, , xxxvii-xxxviii.		0
137	Chapter 2. Nanomaterials for solar energy. SPR Nanoscience, 2013, , 23-57.	0.3	1
138	Synthesis of anisotropic PbS nanoparticles using heterocyclic dithiocarbamate complexes. Dalton Transactions, 2012, 41, 8297.	1.6	43
139	An <i>in vitro</i> assessment of the interaction of cadmium selenide quantum dots with DNA, iron, and blood platelets. IUBMB Life, 2012, 64, 995-1002.	1.5	24
140	Facile synthesis of organically capped PbS nanoparticles. Journal of Alloys and Compounds, 2012, 537, 19-23.	2.8	11
141	Facile Synthesis of Organically Capped CdTe Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 2640-2644.	0.9	6
142	The oriented self-assembly of small PbSe nanocrystals into extended structures â€~nanoworms'. Materials Letters, 2012, 77, 78-81.	1.3	7
143	A facile hybrid route to luminescent ZnTe nanoparticles. Materials Letters, 2012, 81, 108-111.	1.3	9
144	Heterocyclic dithiocarbamates: precursors for shape controlled growth of CdS nanoparticles. New Journal of Chemistry, 2011, 35, 1133.	1.4	52

#	Article	IF	CITATIONS
145	Synthesis, density functional theory, molecular dynamics and electrochemical studies of 3-thiopheneacetic acid-capped gold nanoparticles. Journal of Molecular Structure, 2011, 1006, 494-501.	1.8	8
146	A facile route to shape controlled CdTe nanoparticles. Materials Chemistry and Physics, 2011, 126, 500-506.	2.0	14
147	Synthesis of triethanolamine (TEA) capped CdSe nanoparticles. Materials Letters, 2011, 65, 1283-1286.	1.3	10
148	Synthesis of PVP capped gold nanoparticles by the UV-irradiation technique. Materials Letters, 2011, 65, 2844-2847.	1.3	21
149	Synthesis and Structural Characterization of a Nickel(II) Complex with Unsymmetrical NNO-Donor Schiff Base Ligand. Journal of Chemical Crystallography, 2011, 41, 1032-1035.	0.5	4
150	A New Route to Lead Chalcogenide Nanocrystals. European Journal of Inorganic Chemistry, 2011, 2011, 5196-5201.	1.0	10
151	A facile "green―synthesis of ascorbic acid-capped ZnSe nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 79, 126-130.	2.5	24
152	The influence of the cadmium source on the shape of CdSe nanoparticles. Materials Letters, 2010, 64, 1037-1040.	1.3	16
153	A new synthesis of hexadecylamine-capped Mn-doped wurtzite CdSe nanoparticles. Materials Letters, 2010, 64, 1513-1516.	1.3	19
154	Simple Route to Dots and Rods of PbTe Nanocrystals. Chemistry of Materials, 2010, 22, 3817-3819.	3.2	40
155	The Effect of Precursor Concentration, Temperature and Capping Group on the Morphology of CdS Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 4760-4766.	0.9	21
156	Time dependant evolution of silver nanodendrites. Materials Letters, 2009, 63, 447-450.	1.3	34
157	A novel route to cysteine capped Au–CdSe hybrid nanoparticles. Materials Letters, 2009, 63, 2097-2099.	1.3	8
158	Strontium aluminate/polymer composites: Morphology, luminescent properties, and durability. Journal of Applied Polymer Science, 2009, 112, 3347-3354.	1.3	34
159	Study on growth kinetics of hexadecylamine capped CdSe nanoparticles using its electronic properties. Physica B: Condensed Matter, 2009, 404, 1204-1208.	1.3	14
160	Synthesis of hexadecylamine capped CdS nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron, 2009, 28, 2977-2982.	1.0	42
161	An improved N,N-dimethylformamide and polyvinyl pyrrolidone approach for the synthesis of long silver nanowires. Journal of Alloys and Compounds, 2009, 469, 519-522.	2.8	25
162	Nanoparticles and Thin Films of Silver from Complexes of Derivatives of N-(Diisopropylthiophosphoryl)thioureas. Chemistry of Materials, 2009, 21, 4233-4240.	3.2	19

#	Article	IF	CITATIONS
163	Surface enhanced Raman spectroscopy (SERS) and density functional theory (DFT) study for understanding the regioselective adsorption of pyrrolidinone on the surface of silver and gold colloids. Journal of Molecular Structure, 2009, 935, 32-38.	1.8	62
164	A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth, 2008, 310, 3230-3234.	0.7	62
165	Synthesis and characterization of rhodium sulfide nanoparticles and thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 111-115.	1.7	8
166	A new synthetic route to organically capped cadmium selenide nanoparticles. New Journal of Chemistry, 2008, 32, 1432.	1.4	20
167	A Facile, "Green―One – Step, Room Temperature Synthesis of a Series of monodispersed MSe(M = Cd or)	TjÆŢQq1∶	l g.7843141
168	Stable, Hydrophilic Nitrilotriacetic Acid-Capped Gold Monolayer Protected Clusters. Materials Research Society Symposia Proceedings, 2007, 1064, 3101.	0.1	2
169	Cadmium(ii) complexes of N,N-diethyl-N′-benzoylthio(seleno)urea as single-source precursors for the preparation of CdS and CdSe nanoparticles. New Journal of Chemistry, 2007, 31, 1647.	1.4	77
170	N,N′-Diisopropyl- and N,N′-dicyclohexylthiourea cadmium(II) complexes as precursors for the synthesis of CdS nanoparticles. Polyhedron, 2007, 26, 3947-3955.	1.0	30
171	Use of metal complexes to synthesize semiconductor nanoparticles. Pure and Applied Chemistry, 2006, 78, 1691-1702.	0.9	49
172	Polystyrene-co-maleic acid/CdS nanocomposites: Preparation and properties. Journal of Physics and Chemistry of Solids, 2005, 66, 1302-1306.	1.9	10
173	Structure and properties of PbS–polyacrylamide nanocomposites. Applied Physics A: Materials Science and Processing, 2005, 81, 835-838.	1.1	28
174	Synthesis of GaS Nanoparticles from a Single-Source Precursor [Ga(S2CNEt2)3/. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0
175	Precursor Routes to Semiconductor Quantum Dots. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 689-712.	0.8	25
176	N-alkylthioureacadmium (II) complexes as novel precursors for the synthesis of CdS nanoparticles. Journal of Materials Science: Materials in Electronics, 2004, 15, 313-316.	1.1	23
177	Characterization of polystyrene filled with HgS nanoparticles. Materials Letters, 2004, 58, 361-364.	1.3	33
178	Cd(NH2CSNHNHCSNH2)Cl2: a new single-source precursor for the preparation of CdS nanoparticles. Polyhedron, 2003, 22, 3129-3135.	1.0	42
179	STUDIES OF MICROENVIRONMENTAL EFFECTS ON COMPLEXATION OF POLYMER-BOUND SCHIFF BASES WITH TRANSITION METAL IONS. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2002, 32, 1153-1175.	0.6	3
180	A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides. Chemistry of Materials, 2002, 14, 2004-2010.	3.2	201

#	Article	IF	CITATIONS
181	A single-source route to CdS nanorods. Chemical Communications, 2002, , 564-565.	2.2	76
182	Cadmium ethylxanthate: A novel single-source precursor for the preparation of CdS nanoparticles. Journal of Materials Chemistry, 2002, 12, 2722-2725.	6.7	144
183	Synthesis of TOPO-capped PtS and PdS nanoparticles from [Pt(S2CNMe(Hex))2] and [Pd(S2CNMe(Hex))2]. Journal of Materials Chemistry, 2002, 12, 92-97.	6.7	44
184	Synthesis of TOPO-capped Mn-doped ZnS and CdS quantum dots. Journal of Materials Chemistry, 2001, 11, 2382-2386.	6.7	148
185	Preparation of CdS nanoparticles using the cadmium(II) complex of N,N′Âbis(thiocarbamoyl)hydrazine as a simple singleÂsource precursor. Journal of Materials Chemistry, 2001, 11, 1555-1556.	6.7	54
186	Air-Stable Single-Source Precursors for the Synthesis of Chalcogenide Semiconductor Nanoparticles. Chemistry of Materials, 2001, 13, 913-920.	3.2	269
187	The use of dithio- and diselenocarbamates as precursors to nanoscale materials. Materials Science and Engineering C, 2001, 16, 129-133.	3.8	25
188	A simple route to synthesise nanodimensional CdSe–CdS core–shell structures from single molecule precursors. Chemical Communications, 1999, , 1573-1574.	2.2	57
189	Novel singleÂmolecule precursor routes for the direct synthesis of InS and InSe quantum dots. Journal of Materials Chemistry, 1999, 9, 2885-2888.	6.7	58
190	Progress in Green Solvents for the Stabilisation of Nanomaterials: Imidazolium Based Ionic Liquids. , O, , .		4
191	Indium Chalcogenide Nanomaterials in the Forefront of Recent Technological Advancements. , 0, , .		0