Saskia C M Van Wees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494546/publications.pdf

Version: 2024-02-01

SASKIA C M VAN MEES

#	Article	IF	CITATIONS
1	Transcriptional regulation of plant innate immunity. Essays in Biochemistry, 2022, 66, 607-620.	4.7	9
2	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
3	Multiple levels of crosstalk in hormone networks regulating plant defense. Plant Journal, 2021, 105, 489-504.	5.7	175
4	Plant hormone functions and interactions in biological systems. Plant Journal, 2021, 105, 287-289.	5.7	14
5	A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. Planta, 2021, 253, 102.	3.2	8
6	Mechanisms of far-red light-mediated dampening of defense against <i>Botrytis cinerea</i> in tomato leaves. Plant Physiology, 2021, 187, 1250-1266.	4.8	14
7	Farâ€red light promotes <i>Botrytis cinerea</i> disease development in tomato leaves via jasmonateâ€dependent modulation of soluble sugars. Plant, Cell and Environment, 2020, 43, 2769-2781.	5.7	43
8	Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251, 75.	3.2	18
9	Editorial: Cross-Frontier Communication: Phytohormone Functions at the Plant-Microbe Interface and Beyond. Frontiers in Plant Science, 2020, 11, 386.	3.6	5
10	Bioassays to Evaluate the Resistance of Whole Plants to the Herbivorous Insect Thrips. Methods in Molecular Biology, 2020, 2085, 93-108.	0.9	1
11	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	7.3	49
12	Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 2019, 154, 31-42.	1.7	31
13	Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. Planta, 2019, 249, 1087-1105.	3.2	26
14	Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany, 2018, 69, 1837-1848.	4.8	66
15	Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS ONE, 2018, 13, e0206103.	2.5	13
16	Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Frontiers in Immunology, 2018, 9, 2223.	4.8	31
17	Genomeâ€wide association study reveals novel players in defense hormone crosstalk in <i>Arabidopsis</i> . Plant, Cell and Environment, 2018, 41, 2342-2356.	5.7	67
18	<i>Arabidopsis</i> JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6388-6393.	7.1	165

SASKIA C M VAN WEES

#	Article	IF	CITATIONS
19	Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant Cell, 2017, 29, 2086-2105.	6.6	220
20	Airborne signals from <i>Trichoderma</i> fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acidâ€dependent defences in shoots of <scp><i>Arabidopsis thaliana</i></scp> and <scp><i>Solanum lycopersicum</i></scp> . Plant, Cell and Environment, 2017, 40, 2691-2705.	5.7	153
21	Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by <i>Trichoderma harzianum</i> T-78. Plant Signaling and Behavior, 2017, 12, e1345404.	2.4	47
22	Shifting from priming of salicylic acid―to jasmonic acid―egulated defences by <i>Trichoderma</i> protects tomato against the root knot nematode <i>Meloidogyne incognita</i> . New Phytologist, 2017, 213, 1363-1377.	7.3	275
23	Genetic architecture of plant stress resistance: multiâ€trait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
24	Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. Frontiers in Plant Science, 2017, 8, 700.	3.6	26
25	Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 2016, 86, 249-267.	5.7	200
26	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	7.3	53
27	Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. Plant and Cell Physiology, 2016, 58, pcw187.	3.1	66
28	Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Frontiers in Plant Science, 2015, 6, 639.	3.6	165
29	VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP ₈ and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.	6.6	153
30	Induced Disease Resistance. , 2015, , 123-133.		10
31	How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 2015, 6, 170.	3.6	400
32	Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiology, 2015, 169, pp.01020.2015.	4.8	149
33	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	2.5	55
34	Different shades of <scp>JAZ</scp> during plant growth and defense. New Phytologist, 2014, 204, 261-264.	7.3	53
35	Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 2014, 40, 804-815.	1.8	171
36	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	7.8	2,193

SASKIA C M VAN WEES

#	Article	IF	CITATIONS
37	Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science, 2013, 18, 539-545.	8.8	396
38	Costs and benefits of hormoneâ€regulated plant defences. Plant Pathology, 2013, 62, 43-55.	2.4	171
39	RNA-Seq: revelation of the messengers. Trends in Plant Science, 2013, 18, 175-179.	8.8	155
40	Bioassays for Assessing Jasmonate-Dependent Defenses Triggered by Pathogens, Herbivorous Insects, or Beneficial Rhizobacteria. Methods in Molecular Biology, 2013, 1011, 35-49.	0.9	53
41	Induced plant responses to microbes and insects. Frontiers in Plant Science, 2013, 4, 475.	3.6	42
42	Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science, 2013, 4, 539.	3.6	144
43	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 Â Â. Plant Cell, 2013, 25, 744-761.	6.6	381
44	Wide Screening of Phage-Displayed Libraries Identifies Immune Targets in Planta. PLoS ONE, 2013, 8, e54654.	2.5	11
45	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	9.4	2,396
46	Unravelling intimacies between plants and their enemies. Plant Biology, 2012, 14, iii-iv.	3.8	1
47	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	3.6	155
48	Genetic dissection of basal defence responsiveness in accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2011, 34, 1191-1206.	5.7	46
49	<i>Arabidopsis thaliana cdd1</i> mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Molecular Plant Pathology, 2011, 12, 855-865.	4.2	30
50	Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 2010, 232, 1423-1432.	3.2	249
51	Plant Immunity: It's the Hormones Talking, But What Do They Say?. Plant Physiology, 2010, 154, 536-540.	4.8	280
52	Plant Defense Signaling from the Underground Primes Aboveground Defenses to Confer Enhanced Resistance in a Cost-Efficient Manner. Signaling and Communication in Plants, 2010, , 43-60.	0.7	9
53	Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70, 1581-1588.	2.9	369
54	Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5, 308-316.	8.0	1,987

SASKIA C M VAN WEES

#	Article	IF	CITATIONS
55	Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Trypan Blue Stain for Fungi, Oomycetes, and Dead Plant Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4982.	0.3	52
56	Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 2008, 11, 443-448.	7.1	755
57	Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant Journal, 2005, 43, 284-298.	5.7	130
58	Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant Journal, 2003, 33, 733-742.	5.7	215
59	Characterization of the Early Response of Arabidopsis to Alternaria brassicicola Infection Using Expression Profiling. Plant Physiology, 2003, 132, 606-617.	4.8	215
60	Signalling in Rhizobacteria-Induced Systemic Resistance inArabidopsis thaliana. Plant Biology, 2002, 4, 535-544.	3.8	189
61	Rhizobacteria-mediated Induced Systemic Resistance: Triggering, Signalling and Expression. European Journal of Plant Pathology, 2001, 107, 51-61.	1.7	181
62	The Arabidopsis ISR1 Locus Controlling Rhizobacteria-Mediated Induced Systemic Resistance Is Involved in Ethylene Signaling. Plant Physiology, 2001, 125, 652-661.	4.8	98
63	Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsisthaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8711-8716.	7.1	569
64	Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 1999, 41, 537-549.	3.9	283
65	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571-1580.	6.6	1,029
66	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571.	6.6	91
67	Differential Induction of Systemic Resistance in Arabidopsis by Biocontrol Bacteria. Molecular Plant-Microbe Interactions, 1997, 10, 716-724.	2.6	365
68	Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression Plant Cell, 1996, 8, 1225-1237.	6.6	647
69	Systemic Resistance in Arabidopsis Induced by Biocontrol Bacteria Is Independent of Salicylic Acid Accumulation and Pathogenesis-Related Gene Expression. Plant Cell, 1996, 8, 1225.	6.6	123