Saskia C M Van Wees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3494546/publications.pdf

Version: 2024-02-01

69 papers 17,187 citations

45 h-index 95266 68 g-index

78 all docs 78 docs citations

78 times ranked 13293 citing authors

#	Article	IF	CITATIONS
1	Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 2012, 28, 489-521.	9.4	2,396
2	Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 2014, 52, 347-375.	7.8	2,193
3	Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009, 5, 308-316.	8.0	1,987
4	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571-1580.	6.6	1,029
5	Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 2008, 11, 443-448.	7.1	755
6	Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression Plant Cell, 1996, 8, 1225-1237.	6.6	647
7	Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsisthaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8711-8716.	7.1	569
8	How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 2015, 6, 170.	3.6	400
9	Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science, 2013, 18, 539-545.	8.8	396
10	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 Â Â. Plant Cell, 2013, 25, 744-761.	6.6	381
11	Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry, 2009, 70, 1581-1588.	2.9	369
12	Differential Induction of Systemic Resistance in Arabidopsis by Biocontrol Bacteria. Molecular Plant-Microbe Interactions, 1997, 10, 716-724.	2.6	365
13	Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 1999, 41, 537-549.	3.9	283
14	Plant Immunity: It's the Hormones Talking, But What Do They Say?. Plant Physiology, 2010, 154, 536-540.	4.8	280
15	Shifting from priming of salicylic acidâ€to jasmonic acidâ€regulated defences by <i>Trichoderma</i> protects tomato against the root knot nematode <i>Meloidogyne incognita</i> . New Phytologist, 2017, 213, 1363-1377.	7.3	275
16	Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 2010, 232, 1423-1432.	3.2	249
17	Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant Cell, 2017, 29, 2086-2105.	6.6	220
18	Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant Journal, 2003, 33, 733-742.	5.7	215

#	Article	IF	CITATIONS
19	Characterization of the Early Response of Arabidopsis to Alternaria brassicicola Infection Using Expression Profiling. Plant Physiology, 2003, 132, 606-617.	4.8	215
20	Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant Journal, 2016, 86, 249-267.	5.7	200
21	Signalling in Rhizobacteria-Induced Systemic Resistance inArabidopsis thaliana. Plant Biology, 2002, 4, 535-544.	3.8	189
22	Rhizobacteria-mediated Induced Systemic Resistance: Triggering, Signalling and Expression. European Journal of Plant Pathology, 2001, 107, 51-61.	1.7	181
23	Multiple levels of crosstalk in hormone networks regulating plant defense. Plant Journal, 2021, 105, 489-504.	5.7	175
24	Costs and benefits of hormoneâ€regulated plant defences. Plant Pathology, 2013, 62, 43-55.	2.4	171
25	Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 2014, 40, 804-815.	1.8	171
26	Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Frontiers in Plant Science, 2015, 6, 639.	3.6	165
27	<i>Arabidopsis</i> JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6388-6393.	7.1	165
28	Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Frontiers in Plant Science, 2011, 2, 47.	3.6	155
29	RNA-Seq: revelation of the messengers. Trends in Plant Science, 2013, 18, 175-179.	8.8	155
30	VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP ₈ and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.	6.6	153
31	Airborne signals from <i>Trichoderma</i> fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acidâ€dependent defences in shoots of <scp><i>Arabidopsis thaliana</i></scp> and <scp><i>Solanum lycopersicum</i></scp> . Plant, Cell and Environment, 2017, 40, 2691-2705.	5 . 7	153
32	Ethylene: traffic controller on hormonal crossroads to defense. Plant Physiology, 2015, 169, pp.01020.2015.	4.8	149
33	Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science, 2013, 4, 539.	3.6	144
34	Genetic architecture of plant stress resistance: multiâ€trait genomeâ€wide association mapping. New Phytologist, 2017, 213, 1346-1362.	7.3	144
35	Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant Journal, 2005, 43, 284-298.	5.7	130
36	Systemic Resistance in Arabidopsis Induced by Biocontrol Bacteria Is Independent of Salicylic Acid Accumulation and Pathogenesis-Related Gene Expression. Plant Cell, 1996, 8, 1225.	6.6	123

3

#	Article	IF	CITATIONS
37	The Arabidopsis ISR1 Locus Controlling Rhizobacteria-Mediated Induced Systemic Resistance Is Involved in Ethylene Signaling. Plant Physiology, 2001, 125, 652-661.	4.8	98
38	A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell, 1998, 10, 1571.	6.6	91
39	Genomeâ€wide association study reveals novel players in defense hormone crosstalk in <i>Arabidopsis</i>). Plant, Cell and Environment, 2018, 41, 2342-2356.	5.7	67
40	Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes. Plant and Cell Physiology, 2016, 58, pcw187.	3.1	66
41	Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany, 2018, 69, 1837-1848.	4.8	66
42	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	2.5	55
43	Bioassays for Assessing Jasmonate-Dependent Defenses Triggered by Pathogens, Herbivorous Insects, or Beneficial Rhizobacteria. Methods in Molecular Biology, 2013, 1011, 35-49.	0.9	53
44	Different shades of <scp>JAZ</scp> during plant growth and defense. New Phytologist, 2014, 204, 261-264.	7.3	53
45	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	7.3	53
46	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
47	Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Trypan Blue Stain for Fungi, Oomycetes, and Dead Plant Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4982.	0.3	52
48	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	7.3	49
49	Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by <i>Trichoderma harzianum</i> T-78. Plant Signaling and Behavior, 2017, 12, e1345404.	2.4	47
50	Genetic dissection of basal defence responsiveness in accessions of <i>Arabidopsis thaliana</i> Cell and Environment, 2011, 34, 1191-1206.	5.7	46
51	Farâ€red light promotes <i>Botrytis cinerea</i> disease development in tomato leaves via jasmonateâ€dependent modulation of soluble sugars. Plant, Cell and Environment, 2020, 43, 2769-2781.	5.7	43
52	Induced plant responses to microbes and insects. Frontiers in Plant Science, 2013, 4, 475.	3.6	42
53	Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Frontiers in Immunology, 2018, 9, 2223.	4.8	31
54	Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 2019, 154, 31-42.	1.7	31

#	Article	IF	CITATIONS
55	$\!$	4.2	30
56	Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine. Frontiers in Plant Science, 2017, 8, 700.	3.6	26
57	Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. Planta, 2019, 249, 1087-1105.	3.2	26
58	Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance. Planta, 2020, 251, 75.	3.2	18
59	Plant hormone functions and interactions in biological systems. Plant Journal, 2021, 105, 287-289.	5.7	14
60	Mechanisms of far-red light-mediated dampening of defense against <i>Botrytis cinerea</i> in tomato leaves. Plant Physiology, 2021, 187, 1250-1266.	4.8	14
61	Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS ONE, 2018, 13, e0206103.	2.5	13
62	Wide Screening of Phage-Displayed Libraries Identifies Immune Targets in Planta. PLoS ONE, 2013, 8, e54654.	2.5	11
63	Induced Disease Resistance. , 2015, , 123-133.		10
64	Plant Defense Signaling from the Underground Primes Aboveground Defenses to Confer Enhanced Resistance in a Cost-Efficient Manner. Signaling and Communication in Plants, 2010, , 43-60.	0.7	9
65	Transcriptional regulation of plant innate immunity. Essays in Biochemistry, 2022, 66, 607-620.	4.7	9
66	A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. Planta, 2021, 253, 102.	3.2	8
67	Editorial: Cross-Frontier Communication: Phytohormone Functions at the Plant-Microbe Interface and Beyond. Frontiers in Plant Science, 2020, 11, 386.	3.6	5
68	Unravelling intimacies between plants and their enemies. Plant Biology, 2012, 14, iii-iv.	3.8	1
69	Bioassays to Evaluate the Resistance of Whole Plants to the Herbivorous Insect Thrips. Methods in Molecular Biology, 2020, 2085, 93-108.	0.9	1