
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491756/publications.pdf Version: 2024-02-01



HENDIK C. SMITH

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agriculture, Ecosystems and Environment, 2022, 325, 107755.                                           | 5.3 | 14        |
| 2  | <scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.                                                                                                                    | 3.2 | 19        |
| 3  | A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather. Oikos, 2022, 2022, .                                                                            | 2.7 | 1         |
| 4  | Arthropod populations in a subâ€arctic environment facing climate change over a half entury:<br>variability but no general trend. Insect Conservation and Diversity, 2022, 15, 534-542.                                     | 3.0 | 2         |
| 5  | Archetype models upscale understanding of natural pest control response to landâ€use change.<br>Ecological Applications, 2022, 32, .                                                                                        | 3.8 | 11        |
| 6  | The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology, 2022, 103, .                                                                                       | 3.2 | 34        |
| 7  | Evaluating predictive performance of statistical models explaining wild bee abundance in a<br>massâ€flowering crop. Ecography, 2021, 44, 525-536.                                                                           | 4.5 | 11        |
| 8  | Wild insect diversity increases inter-annual stability in global crop pollinator communities.<br>Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.                                              | 2.6 | 43        |
| 9  | Efficient, automated and robust pollen analysis using deep learning. Methods in Ecology and Evolution, 2021, 12, 850-862.                                                                                                   | 5.2 | 22        |
| 10 | Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse<br>gas emissions in mixed agricultural-forestry regions. Agricultural Systems, 2021, 189, 103071.                       | 6.1 | 14        |
| 11 | Reduced crop density increases floral resources to pollinators without affecting crop yield in organic and conventional fields. Journal of Applied Ecology, 2021, 58, 1421-1430.                                            | 4.0 | 12        |
| 12 | Field boundary features can stabilise bee populations and the pollination of massâ€flowering crops in rotational systems. Journal of Applied Ecology, 2021, 58, 2287-2304.                                                  | 4.0 | 10        |
| 13 | Scientific note: Imidacloprid found in wild plants downstream permanent greenhouses in Sweden.<br>Apidologie, 2021, 52, 946-949.                                                                                            | 2.0 | 8         |
| 14 | Fallows and permanent grasslands conserve the species composition and functional diversity of<br>carabid beetles and linyphiid spiders in agricultural landscapes. Insect Conservation and Diversity,<br>2021, 14, 825-836. | 3.0 | 12        |
| 15 | Effects of crop and non-crop resources and competition: High importance of trees and oilseed rape for solitary bee reproduction. Biological Conservation, 2021, 261, 109249.                                                | 4.1 | 14        |
| 16 | Land sharing versus land sparing—What outcomes are compared between which land uses?.<br>Conservation Science and Practice, 2021, 3, e530.                                                                                  | 2.0 | 8         |
| 17 | Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing. Ecological Indicators, 2021, 130, 108098.                                                               | 6.3 | 24        |
| 18 | Models of natural pest control: Towards predictions across agricultural landscapes. Biological<br>Control, 2021, 163, 104761.                                                                                               | 3.0 | 22        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes. Plant Ecology and Evolution, 2021, 154, 341-350.                          | 0.7  | 11        |
| 20 | High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation, 2020, 241, 108255.                                                                                             | 4.1  | 35        |
| 21 | Wild bees and hoverflies respond differently to urbanisation, human population density and urban<br>form. Landscape and Urban Planning, 2020, 204, 103901.                                                                    | 7.5  | 42        |
| 22 | Annual flowers strips benefit bumble bee colony growth and reproduction. Biological Conservation, 2020, 252, 108814.                                                                                                          | 4.1  | 24        |
| 23 | Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following twoâ€donor crosses. Journal of Evolutionary Biology, 2020, 33, 1452-1467. | 1.7  | 5         |
| 24 | Crop diversity benefits carabid and pollinator communities in landscapes with semiâ€natural habitats.<br>Journal of Applied Ecology, 2020, 57, 2170-2179.                                                                     | 4.0  | 83        |
| 25 | Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models.<br>Methods in Ecology and Evolution, 2020, 11, 1673-1689.                                                               | 5.2  | 22        |
| 26 | Farmland birds occupying forest clear-cuts respond to both local and landscape features. Forest<br>Ecology and Management, 2020, 478, 118519.                                                                                 | 3.2  | 7         |
| 27 | Woody elements benefit bird diversity to a larger extent than semi-natural grasslands in cereal-dominated landscapes. Basic and Applied Ecology, 2020, 46, 15-23.                                                             | 2.7  | 11        |
| 28 | Socio-ecological factors determine crop performance in agricultural systems. Scientific Reports, 2020, 10, 4232.                                                                                                              | 3.3  | 12        |
| 29 | Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes.<br>Agriculture, Ecosystems and Environment, 2019, 284, 106600.                                                                   | 5.3  | 10        |
| 30 | A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019,<br>5, eaax0121.                                                                                                        | 10.3 | 524       |
| 31 | Effects of eucalyptus plantations on avian and herb species richness and composition in North-West<br>Spain. Global Ecology and Conservation, 2019, 19, e00690.                                                               | 2.1  | 33        |
| 32 | Competition, seed dispersal and hunting: what drives germination and seedling survival in an Afrotropical forest?. AoB PLANTS, 2019, 11, plz018.                                                                              | 2.3  | 7         |
| 33 | A suboptimal array of options erodes the value of CAP ecological focus areas. Land Use Policy, 2019, 85, 407-418.                                                                                                             | 5.6  | 22        |
| 34 | The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.                                      | 6.4  | 364       |
| 35 | Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 2019, 10, 1481.                                                                           | 12.8 | 150       |
| 36 | Estimating effects of arable land use intensity on farmland birds using joint species modeling.<br>Ecological Applications, 2019, 29, e01875.                                                                                 | 3.8  | 17        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Grasslands—more important for ecosystem services than you might think. Ecosphere, 2019, 10, e02582.                                                                                           | 2.2  | 476       |
| 38 | Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications, 2019, 10, 692.                                                 | 12.8 | 57        |
| 39 | Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. Royal Society Open Science, 2019, 6, 190326.                                 | 2.4  | 24        |
| 40 | Flowering resources distract pollinators from crops: Model predictions from landscape simulations.<br>Journal of Applied Ecology, 2019, 56, 618-628.                                          | 4.0  | 44        |
| 41 | Policy design for the Anthropocene. Nature Sustainability, 2019, 2, 14-21.                                                                                                                    | 23.7 | 176       |
| 42 | A framework to identify indicator species for ecosystem services in agricultural landscapes.<br>Ecological Indicators, 2018, 91, 278-286.                                                     | 6.3  | 21        |
| 43 | Effects of organic farming on bird diversity in North-West Spain. Agriculture, Ecosystems and Environment, 2018, 257, 60-67.                                                                  | 5.3  | 15        |
| 44 | The contribution of CAP greening measures to conservation biological control at two spatial scales.<br>Agriculture, Ecosystems and Environment, 2018, 255, 84-94.                             | 5.3  | 21        |
| 45 | Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biological Conservation, 2018, 218, 247-253.                             | 4.1  | 68        |
| 46 | The impact of sown flower strips on plant reproductive success in Southern Sweden varies with landscape context. Agriculture, Ecosystems and Environment, 2018, 259, 127-134.                 | 5.3  | 10        |
| 47 | Plant–pollinator networks in semiâ€natural grasslands are resistant to the loss of pollinators during blooming of massâ€flowering crops. Ecography, 2018, 41, 62-74.                          | 4.5  | 29        |
| 48 | The value of small arable habitats in the agricultural landscape: Importance for vascular plants and the provisioning of floral resources for bees. Ecological Indicators, 2018, 84, 553-563. | 6.3  | 9         |
| 49 | Crop management affects pollinator attractiveness and visitation in oilseed rape. Basic and Applied Ecology, 2018, 26, 82-88.                                                                 | 2.7  | 18        |
| 50 | Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature<br>Communications, 2018, 9, 5446.                                                              | 12.8 | 45        |
| 51 | Evolution of resident bird breeding phenology in a landscape with heterogeneous resource phenology and carryover effects. Evolutionary Ecology, 2018, 32, 509-528.                            | 1.2  | 1         |
| 52 | Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia, 2018, 188, 863-873.                        | 2.0  | 31        |
| 53 | Organic farming supports spatiotemporal stability in species richness of bumblebees and butterflies.<br>Biological Conservation, 2018, 227, 48-55.                                            | 4.1  | 32        |
| 54 | Predationâ€mediated ecosystem services and disservices in agricultural landscapes. Ecological<br>Applications, 2018, 28, 2109-2118.                                                           | 3.8  | 33        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Scaleâ€dependent foraging tradeoff allows competitive coexistence. Oikos, 2018, 127, 1575-1585.                                                                                                                       | 2.7 | 13        |
| 56 | When beggars are choosers—How nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape. Ecology and Evolution, 2018, 8, 5777-5791.                                                | 1.9 | 28        |
| 57 | Improving agricultural pollution abatement through result-based payment schemes. Land Use Policy, 2018, 77, 209-219.                                                                                                  | 5.6 | 42        |
| 58 | Carryover effects from natal habitat type upon competitive ability lead to trait divergence or<br>source–sink dynamics. Ecology Letters, 2018, 21, 1341-1352.                                                         | 6.4 | 2         |
| 59 | Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.             | 7.1 | 401       |
| 60 | Landâ€use type and intensity differentially filter traits in above―and belowâ€ground arthropod<br>communities. Journal of Animal Ecology, 2017, 86, 511-520.                                                          | 2.8 | 62        |
| 61 | Variation in laying date in relation to spring temperature in three species of tits (Paridae) and pied<br>flycatchers <i>Ficedula hypoleuca</i> in southernmost Sweden. Journal of Avian Biology, 2017, 48,<br>83-90. | 1.2 | 20        |
| 62 | How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere, 2017, 8, e01741.                                                                                                    | 2.2 | 60        |
| 63 | What drives current population trends in forest birds – forest quantity, quality or climate? A<br>large-scale analysis from northern Europe. Forest Ecology and Management, 2017, 385, 177-188.                       | 3.2 | 42        |
| 64 | Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology<br>Letters, 2017, 20, 1427-1436.                                                                                        | 6.4 | 70        |
| 65 | Pollinator population size and pollination ecosystem service responses to enhancing floral and nesting resources. Ecology and Evolution, 2017, 7, 1898-1908.                                                          | 1.9 | 58        |
| 66 | The relation between oilseed rape and pollination of later flowering plants varies across plant species and landscape contexts. Basic and Applied Ecology, 2017, 24, 77-85.                                           | 2.7 | 9         |
| 67 | Agricultural land use affects abundance and dispersal tendency of predatory arthropods. Basic and<br>Applied Ecology, 2017, 18, 40-49.                                                                                | 2.7 | 27        |
| 68 | Embedding Evidence on Conservation Interventions Within a Context of Multilevel Governance.<br>Conservation Letters, 2017, 10, 139-145.                                                                               | 5.7 | 21        |
| 69 | Ecosystem services across the aquatic–terrestrial boundary: Linking ponds to pollination. Basic and<br>Applied Ecology, 2017, 18, 13-20.                                                                              | 2.7 | 43        |
| 70 | Weak functional response to agricultural landscape homogenisation among plants, butterflies and birds. Ecography, 2017, 40, 1221-1230.                                                                                | 4.5 | 17        |
| 71 | A model to account for data dependency when estimating floral cover in different land use types over<br>a season. Environmental and Ecological Statistics, 2017, 24, 505-527.                                         | 3.5 | 3         |
| 72 | Daily Evolution of the Insect Biomass Spectrum in an Agricultural Landscape Accessed with Lidar. EPJ<br>Web of Conferences, 2016, 119, 22004.                                                                         | 0.3 | 24        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities. PLoS ONE, 2016, 11, e0146329.                                                                               | 2.5 | 53        |
| 74 | Contrasting effects of field boundary management on three pollinator groups. Insect Conservation and Diversity, 2016, 9, 427-437.                                                                | 3.0 | 10        |
| 75 | Costâ€effectiveness of conservation payment schemes for species with different range sizes.<br>Conservation Biology, 2016, 30, 894-899.                                                          | 4.7 | 39        |
| 76 | Regional variation in climate change winners and losers highlights the rapid loss of coldâ€dwelling species. Diversity and Distributions, 2016, 22, 468-480.                                     | 4.1 | 70        |
| 77 | Optimizing intermediate ecosystem services in agriculture using rules based on landscape composition and configuration indices. Ecological Economics, 2016, 128, 214-223.                        | 5.7 | 44        |
| 78 | Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a selfâ€compatible herb. American Journal of Botany, 2016, 103, 541-552. | 1.7 | 28        |
| 79 | Historical change and drivers of insect pest abundances in red clover seed production. Agriculture,<br>Ecosystems and Environment, 2016, 233, 318-324.                                           | 5.3 | 5         |
| 80 | Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology<br>Letters, 2016, 19, 1228-1236.                                                             | 6.4 | 195       |
| 81 | Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161641.                            | 2.6 | 94        |
| 82 | Competition between managed honeybees and wild bumblebees depends on landscape context. Basic and Applied Ecology, 2016, 17, 609-616.                                                            | 2.7 | 88        |
| 83 | Large-scale pollination experiment demonstrates the importance of insect pollination in winter oilseed rape. Oecologia, 2016, 180, 759-769.                                                      | 2.0 | 51        |
| 84 | Non-bee insects are important contributors to global crop pollination. Proceedings of the National<br>Academy of Sciences of the United States of America, 2016, 113, 146-151.                   | 7.1 | 618       |
| 85 | Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landscape Ecology, 2016, 31, 567-579.                        | 4.2 | 53        |
| 86 | Local and landscapeâ€level floral resources explain effects of wildflower strips on wild bees across<br>four European countries. Journal of Applied Ecology, 2015, 52, 1165-1175.                | 4.0 | 208       |
| 87 | House sparrow <i>Passer domesticus</i> survival is not associated with MHCâ€l diversity, but possibly<br>with specific MHCâ€l alleles. Journal of Avian Biology, 2015, 46, 167-174.              | 1.2 | 3         |
| 88 | The role of food retailers in improving resilience in global food supply. Global Food Security, 2015, 7,<br>1-8.                                                                                 | 8.1 | 54        |
| 89 | Longâ€term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos, 2015, 124, 1151-1159.                                      | 2.7 | 41        |
| 90 | Sown flower strips in southern Sweden increase abundances of wild bees and hoverflies in the wider<br>landscape. Biological Conservation, 2015, 184, 51-58.                                      | 4.1 | 92        |

| #   | Article                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Landâ€use effects on the functional distinctness of arthropod communities. Ecography, 2015, 38, 889-900.                                                                                   | 4.5  | 67        |
| 92  | Effects on rural House Sparrow and Tree Sparrow populations by experimental nest-site addition.<br>Journal of Ornithology, 2015, 156, 231-237.                                             | 1.1  | 14        |
| 93  | Enhanced science–stakeholder communication to improve ecosystem model performances for climate change impact assessments. Ambio, 2015, 44, 249-255.                                        | 5.5  | 16        |
| 94  | Removal of woody vegetation from uncultivated field margins is insufficient to promote non-woody vascular plant diversity. Agriculture, Ecosystems and Environment, 2015, 201, 1-10.       | 5.3  | 4         |
| 95  | Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.<br>Nature Communications, 2015, 6, 7414.                                               | 12.8 | 656       |
| 96  | Pollinator communities in strawberry crops – variation at multiple spatial scales. Bulletin of<br>Entomological Research, 2015, 105, 497-506.                                              | 1.0  | 12        |
| 97  | Agricultural management reduces emergence of pollen beetle parasitoids. Agriculture, Ecosystems and Environment, 2015, 205, 9-14.                                                          | 5.3  | 10        |
| 98  | Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 2015, 521, 77-80.                                                                                      | 27.8 | 816       |
| 99  | Swedish birds are tracking temperature but not rainfall: evidence from a decade of abundance changes. Global Ecology and Biogeography, 2015, 24, 859-872.                                  | 5.8  | 49        |
| 100 | Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic and Applied Ecology, 2015, 16, 250-259.                                                     | 2.7  | 100       |
| 101 | Bumble bees show trait-dependent vulnerability to landscape simplification. Biodiversity and Conservation, 2015, 24, 3469-3489.                                                            | 2.6  | 50        |
| 102 | Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory.<br>Ecological Modelling, 2015, 316, 133-143.                                                   | 2.5  | 73        |
| 103 | Effects of landscape composition and configuration on pollination in a native herb: a field experiment. Oecologia, 2015, 179, 509-518.                                                     | 2.0  | 14        |
| 104 | Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and<br>Identification of Knowledge Gaps. PLoS ONE, 2015, 10, e0136928.                    | 2.5  | 236       |
| 105 | Contrasting effects of habitat area and connectivity on evenness of pollinator communities.<br>Ecography, 2014, 37, 544-551.                                                               | 4.5  | 30        |
| 106 | The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399. | 6.4  | 172       |
| 107 | Managing ecosystem services for agriculture: Will landscape-scale management pay?. Ecological Economics, 2014, 99, 53-62.                                                                  | 5.7  | 86        |
| 108 | Adaptation of reproductive phenology to climate change with ecological feedback via dominance<br>hierarchies. Journal of Animal Ecology, 2014, 83, 440-449.                                | 2.8  | 11        |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Optimizing agri-environment schemes for biodiversity, ecosystem services or both?. Biological Conservation, 2014, 172, 65-71.                                             | 4.1 | 162       |
| 110 | Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia, 2014, 175, 971-983.                               | 2.0 | 51        |
| 111 | Changes of community composition at multiple trophic levels due to hunting in Nigerian tropical forests. Ecography, 2014, 37, 367-377.                                    | 4.5 | 28        |
| 112 | Land Sparing Versus Land Sharing: Moving Forward. Conservation Letters, 2014, 7, 149-157.                                                                                 | 5.7 | 422       |
| 113 | Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use<br>intensity. Ecology Letters, 2014, 17, 1168-1177.                        | 6.4 | 87        |
| 114 | Organic farming and heterogeneous landscapes positively affect different measures of plant diversity.<br>Journal of Applied Ecology, 2014, 51, 1544-1553.                 | 4.0 | 28        |
| 115 | Late-season mass-flowering red clover increases bumble bee queen and male densities. Biological Conservation, 2014, 172, 138-145.                                         | 4.1 | 163       |
| 116 | Ecological production functions for biological control services in agricultural landscapes.<br>Methods in Ecology and Evolution, 2014, 5, 243-252.                        | 5.2 | 60        |
| 117 | Landscape-scale crop diversity interacts with local management to determine ground beetle diversity.<br>Basic and Applied Ecology, 2014, 15, 241-249.                     | 2.7 | 37        |
| 118 | Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination.<br>Agriculture, Ecosystems and Environment, 2014, 184, 145-148.        | 5.3 | 51        |
| 119 | A Transparent Process for "Evidenceâ€Informedâ€IPolicy Making. Conservation Letters, 2014, 7, 119-125.                                                                    | 5.7 | 97        |
| 120 | Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landscape Ecology, 2013, 28, 1283-1292.          | 4.2 | 69        |
| 121 | Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera: Carabidae).<br>Landscape Ecology, 2013, 28, 487-494.                                | 4.2 | 68        |
| 122 | Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.                                           | 8.7 | 320       |
| 123 | Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic and Applied Ecology, 2013, 14, 540-546. | 2.7 | 55        |
| 124 | Habitat-specific bird trends and their effect on the Farmland Bird Index. Ecological Indicators, 2013, 24, 382-391.                                                       | 6.3 | 17        |
| 125 | Seasonal persistence of bumblebee populations is affected by landscape context. Agriculture,<br>Ecosystems and Environment, 2013, 165, 201-209.                           | 5.3 | 87        |
| 126 | Impact of climate change on communities: revealing species' contribution. Journal of Animal Ecology, 2013, 82, 551-561.                                                   | 2.8 | 57        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography, 2013, 36, 313-322.                                                               | 4.5 | 96        |
| 128 | Environmental factors driving the effectiveness of European agriâ€environmental measures in mitigating pollinator loss – a metaâ€analysis. Ecology Letters, 2013, 16, 912-920.                                        | 6.4 | 378       |
| 129 | Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. Journal of Applied Ecology, 2013, 50, 345-354.                                                     | 4.0 | 172       |
| 130 | Effects of supplemental winter feeding on House Sparrows ( <i>Passer domesticus</i> ) in relation to landscape structure and farming systems in southern Sweden. Bird Study, 2013, 60, 238-246.                       | 1.0 | 3         |
| 131 | When ecosystem services interact: crop pollination benefits depend on the level of pest control.<br>Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122243.                                     | 2.6 | 81        |
| 132 | Bushmeat hunting changes regeneration of African rainforests. Proceedings of the Royal Society B:<br>Biological Sciences, 2013, 280, 20130246.                                                                        | 2.6 | 193       |
| 133 | Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal<br>Society B: Biological Sciences, 2012, 279, 309-315.                                                                | 2.6 | 198       |
| 134 | Towards Integrated Pest Management in Red Clover Seed Production. Journal of Economic Entomology, 2012, 105, 1620-1628.                                                                                               | 1.8 | 22        |
| 135 | Organic Farming Improves Pollination Success in Strawberries. PLoS ONE, 2012, 7, e31599.                                                                                                                              | 2.5 | 69        |
| 136 | Is the largeâ€scale decline of the starling related to local changes in demography?. Ecography, 2012, 35, 741-748.                                                                                                    | 4.5 | 10        |
| 137 | Assessing habitat quality of farm-dwelling house sparrows in different agricultural landscapes.<br>Oecologia, 2012, 168, 959-966.                                                                                     | 2.0 | 8         |
| 138 | Field scale organic farming does not counteract landscape effects on butterfly trait composition.<br>Agriculture, Ecosystems and Environment, 2012, 158, 66-71.                                                       | 5.3 | 12        |
| 139 | The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape<br>Ecology, 2012, 27, 121-131.                                                                                  | 4.2 | 78        |
| 140 | Gardens benefit bees and enhance pollination in intensively managed farmland. Biological<br>Conservation, 2011, 144, 2602-2606.                                                                                       | 4.1 | 112       |
| 141 | Does conservation on farmland contribute to halting the biodiversity decline?. Trends in Ecology and Evolution, 2011, 26, 474-481.                                                                                    | 8.7 | 522       |
| 142 | A benefit analysis of screening for invasive species – baseâ€rate uncertainty and the value of information. Methods in Ecology and Evolution, 2011, 2, 500-508.                                                       | 5.2 | 9         |
| 143 | Assessing the effect of the time since transition to organic farming on plants and butterflies. Journal of Applied Ecology, 2011, 48, 543-550.                                                                        | 4.0 | 64        |
| 144 | Developing European conservation and mitigation tools for pollination services: approaches of the<br>STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50,<br>152-164. | 1.5 | 64        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Land use intensity and landscape complexity—Analysis of landscape characteristics in an agricultural region in Southern Sweden. Agriculture, Ecosystems and Environment, 2010, 136, 169-176. | 5.3 | 87        |
| 146 | Short- and long-term consequences of prenatal testosterone for immune function: an experimental study in the zebra finch. Behavioral Ecology and Sociobiology, 2010, 64, 717-727.            | 1.4 | 34        |
| 147 | Body mass changes in a biparental incubator: the Redshank Tringa totanus. Journal of Ornithology, 2010, 151, 179.                                                                            | 1.1 | 4         |
| 148 | Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia, 2010, 162, 1071-1079.                                           | 2.0 | 96        |
| 149 | Farmland as stopover habitat for migrating birds - effects of organic farming and landscape structure. Oikos, 2010, 119, 1114-1125.                                                          | 2.7 | 43        |
| 150 | Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos, 2010, 119, 1711-1718.                             | 2.7 | 180       |
| 151 | Time to establishment success for introduced signal crayfish in Sweden – a statistical evaluation when success is partially known. Journal of Applied Ecology, 2010, 47, 1044-1052.          | 4.0 | 14        |
| 152 | Mother–offspring conflicts, hormone signaling, and asymmetric ownership of information.<br>Behavioral Ecology, 2010, 21, 893-897.                                                            | 2.2 | 11        |
| 153 | The Design of Artificial Nestboxes for the Study of Secondary Hole-Nesting Birds: A Review of Methodological Inconsistencies and Potential Biases. Acta Ornithologica, 2010, 45, 1-26.       | 0.5 | 274       |
| 154 | Mobility-dependent effects on species richness in fragmented landscapes. Basic and Applied Ecology, 2009, 10, 573-578.                                                                       | 2.7 | 39        |
| 155 | The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity.<br>Landscape and Urban Planning, 2009, 93, 31-37.                                           | 7.5 | 131       |
| 156 | Local and landscape effects of organic farming on butterfly species richness and abundance. Journal of Applied Ecology, 2008, 45, 813-820.                                                   | 4.0 | 160       |
| 157 | Restricted dispersal in a flying beetle assessed by telemetry. Biodiversity and Conservation, 2008, 17, 675-684.                                                                             | 2.6 | 78        |
| 158 | Do corridors promote dispersal in grassland butterflies and other insects?. Landscape Ecology, 2008, 23, 27-40.                                                                              | 4.2 | 75        |
| 159 | Displacement of a native by an alien bumblebee: lower pollinator efficiency overcome by overwhelmingly higher visitation frequency. Oecologia, 2008, 156, 835-845.                           | 2.0 | 61        |
| 160 | Interacting effects of farming practice and landscape context on bumble bees. Biological Conservation, 2008, 141, 417-426.                                                                   | 4.1 | 208       |
| 161 | Quantitative estimates of tree species selectivity by moose ( <i>Alces alces</i> ) in a forest landscape.<br>Scandinavian Journal of Forest Research, 2007, 22, 407-414.                     | 1.4 | 74        |
| 162 | Carotenoid and protein supplementation have differential effects on pheasant ornamentation and immunity. Journal of Evolutionary Biology, 2007, 20, 310-319.                                 | 1.7 | 48        |

HENRIK G SMITH

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biological Conservation, 2006, 128, 564-573.                                                | 4.1 | 104       |
| 164 | Effects of grassland abandonment, restoration and management on butterflies and vascular plants.<br>Biological Conservation, 2006, 133, 291-300.                                                    | 4.1 | 194       |
| 165 | Food Limitation During Breeding in a Heterogeneous Landscape. Auk, 2006, 123, 97-107.                                                                                                               | 1.4 | 23        |
| 166 | The effect of organic farming on butterfly diversity depends on landscape context. Journal of Applied Ecology, 2006, 43, 1121-1127.                                                                 | 4.0 | 244       |
| 167 | Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes.<br>Journal of Applied Ecology, 2006, 44, 50-59.                                                   | 4.0 | 347       |
| 168 | Effects of an agri-environment scheme on wader populations of coastal meadows of southern<br>Sweden. Agriculture, Ecosystems and Environment, 2006, 113, 264-271.                                   | 5.3 | 35        |
| 169 | Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.<br>Oecologia, 2006, 149, 526-534.                                                             | 2.0 | 123       |
| 170 | FOOD LIMITATION DURING BREEDING IN A HETEROGENEOUS LANDSCAPE. Auk, 2006, 123, 97.                                                                                                                   | 1.4 | 20        |
| 171 | Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2551-2557. | 2.6 | 127       |
| 172 | The Starling Mating System as an Outcome of the Sexual Conflict. Evolutionary Ecology, 2005, 19, 151-165.                                                                                           | 1.2 | 14        |
| 173 | Antagonistic Coevolution Under Sexual Conflict. Evolutionary Ecology, 2005, 19, 137-150.                                                                                                            | 1.2 | 18        |
| 174 | Introduction: Evolutionary Processes in Sexual Conflicts. Evolutionary Ecology, 2005, 19, 109-110.                                                                                                  | 1.2 | 1         |
| 175 | Brood parasitic European starlings do not lay high-quality eggs. Behavioral Ecology, 2005, 16, 507-513.                                                                                             | 2.2 | 19        |
| 176 | The spatial and temporal repeatability of PHA-responses. Behavioral Ecology, 2005, 16, 497-498.                                                                                                     | 2.2 | 13        |
| 177 | Nesting success in Redshank <i>Tringa totanus</i> breeding on coastal meadows and the importance of habitat features used as perches by avian predators. Bird Study, 2005, 52, 289-296.             | 1.0 | 14        |
| 178 | Egg yolk androgen levels increase with breeding density in the European Starling, Sturnus vulgaris.<br>Functional Ecology, 2004, 18, 58-66.                                                         | 3.6 | 87        |
| 179 | Selection for synchronous breeding in the European starling. Oikos, 2004, 105, 301-311.                                                                                                             | 2.7 | 32        |
| 180 | Specific floater home ranges and prospective behaviour in the European starling, Sturnus vulgaris.<br>Die Naturwissenschaften, 2004, 91, 85-89.                                                     | 1.6 | 25        |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Interfemale variation in egg yolk androgen allocation in the European starling: do high-quality females invest more?. Animal Behaviour, 2003, 65, 841-850.             | 1.9 | 120       |
| 182 | Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biological Conservation, 2003, 114, 179-187.                   | 4.1 | 68        |
| 183 | Starling foraging success in relation to agricultural land-use. Ecography, 2002, 25, 363-371.                                                                          | 4.5 | 20        |
| 184 | Long- and short-term state-dependent foraging under predation risk: an indication of habitat quality.<br>Animal Behaviour, 2002, 63, 981-989.                          | 1.9 | 85        |
| 185 | Nest-attenders in the Pied Flycatcher (Ficedula hypoleuca) During Nestling Rearing: A Possible Case of<br>Prospective Resource Exploration. Auk, 2001, 118, 1069-1072. | 1.4 | 27        |
| 186 | Early Nutrition Causes Persistent Effects on Pheasant Morphology. Physiological and Biochemical<br>Zoology, 2001, 74, 212-218.                                         | 1.5 | 51        |
| 187 | Clutch size evolution under sexual conflict enhances the stability of mating systems. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2163-2170.   | 2.6 | 39        |
| 188 | The effect of egg size and habitat on starling nestling growth and survival. Oecologia, 1998, 115, 59-63.                                                              | 2.0 | 79        |
| 189 | Female aggression in the European starling during the breeding season. Animal Behaviour, 1997, 53, 13-23.                                                              | 1.9 | 91        |
| 190 | Polygynous male starlings allocate parental effort according to relative hatching date. Animal Behaviour, 1997, 54, 73-79.                                             | 1.9 | 13        |
| 191 | Begging affects parental effort in the pied flycatcher, Ficedula hypoleuca. Behavioral Ecology and<br>Sociobiology, 1997, 41, 381-384.                                 | 1.4 | 113       |
| 192 | Adoption or infanticide: options of replacement males in the European starling. Behavioral Ecology and Sociobiology, 1996, 38, 191-197.                                | 1.4 | 22        |
| 193 | Paternal care in the European starling, Sturnus vulgaris : nestling provisioning. Behavioral Ecology and Sociobiology, 1996, 39, 301-309.                              | 1.4 | 39        |
| 194 | Adaptive Significance of Egg Size in the European Starling: Experimental Tests. Ecology, 1995, 76, 1-7.                                                                | 3.2 | 61        |
| 195 | Paternal care in the European starling,Sturnus vulgaris: incubation. Animal Behaviour, 1995, 50,<br>323-331.                                                           | 1.9 | 37        |
| 196 | Heritability of nestling growth in cross-fostered European Starlings Sturnus vulgaris Genetics, 1995, 141, 657-665.                                                    | 2.9 | 47        |
| 197 | Intrasexual competition among polygynously mated female starlings (Sturnus vulgaris). Behavioral<br>Ecology, 1994, 5, 57-63.                                           | 2.2 | 64        |
| 198 | Parent-Offspring Conflicts over Reproductive Efforts: Variations upon a Theme by Charnov. Journal of Theoretical Biology, 1994, 170, 215-218.                          | 1.7 | 9         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Heritability of tarsus length in cross-fostered broods of the European starling (Sturnus vulgaris).<br>Heredity, 1993, 71, 318-322.                                     | 2.6 | 46        |
| 200 | Seasonal Decline in Clutch Size of the Marsh Tit (Parus palustris) in Relation to Date-Specific Survival of Offspring. Auk, 1993, 110, 889-899.                         | 1.4 | 30        |
| 201 | Extra-Pair Paternity in the European Starling: The Effect of Polygyny. Condor, 1993, 95, 1006-1015.                                                                     | 1.6 | 49        |
| 202 | Parental age and reproduction in the Marsh Tit <i>Paras palustris</i> . Ibis, 1993, 135, 196-201.                                                                       | 1.9 | 23        |
| 203 | Male Incubation in Barn Swallows: The Influence of Nest Temperature and Sexual Selection. Condor, 1992, 94, 750-759.                                                    | 1.6 | 53        |
| 204 | DNA fingerprinting reveals relation between tail ornaments and cuckoldry in barn swallows,<br>Hirundo rustica. Behavioral Ecology, 1991, 2, 90-98.                      | 2.2 | 115       |
| 205 | Nestling American robins compete with siblings by begging. Behavioral Ecology and Sociobiology, 1991, 29, 307-312.                                                      | 1.4 | 177       |
| 206 | Dominance, prior occupancy, and winter residency in the great tit (Parus major). Behavioral Ecology and Sociobiology, 1991, 29, 147-152.                                | 1.4 | 123       |
| 207 | VÇommen till Ornis Svecica!. Ornis Svecica, 1991, 1, 1-2.                                                                                                               | 0.1 | 2         |
| 208 | Female nutritional state affects the rate of male incubation feeding in the pied flycatcher Ficedula hypoleuca. Behavioral Ecology and Sociobiology, 1989, 24, 417-420. | 1.4 | 48        |
| 209 | The significance of clutch overlap in Great Tits <i>Parus major</i> . Ibis, 1989, 131, 589-600.                                                                         | 1.9 | 21        |
| 210 | Feeding frequency and parental division of labour in the double-brooded great tit Parus major.<br>Behavioral Ecology and Sociobiology, 1988, 22, 447-453.               | 1.4 | 89        |
| 211 | Incubation feeding as a male tactic for early hatching. Animal Behaviour, 1988, 36, 641-647.                                                                            | 1.9 | 115       |
| 212 | Intraspecific Variation in Migratory Pattern of a Partial Migrant, the Blue Tit (Parus caeruleus): An<br>Evaluation of Different Hypotheses. Auk, 1987, 104, 109-115.   | 1.4 | 146       |
| 213 | Effect of Experimentally Altered Brood Size on Frequency and Timing of Second Clutches in the Great<br>Tit. Auk, 1987, 104, 700-706.                                    | 1.4 | 83        |