Vincent J Munster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3491008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 2020, 382, 1564-1567.	27.0	7,369
2	SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14, 523-534.	28.6	2,752
3	Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 2020, 5, 562-569.	13.3	2,585
4	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	13.7	2,080
5	Global Patterns of Influenza A Virus in Wild Birds. Science, 2006, 312, 384-388.	12.6	1,619
6	Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science, 2012, 336, 1534-1541.	12.6	1,416
7	Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. Journal of Virology, 2005, 79, 2814-2822.	3.4	1,274
8	A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment. New England Journal of Medicine, 2020, 382, 692-694.	27.0	1,104
9	Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1356-1361.	7.1	953
10	ChAdOx1ÂnCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586, 578-582.	27.8	840
11	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
12	Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 2020, 585, 268-272.	27.8	619
13	Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell, 2020, 183, 1901-1912.e9.	28.9	618
14	Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020, 585, 273-276.	27.8	592
15	Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds. PLoS Pathogens, 2007, 3, e61.	4.7	591
16	H5N1 Virus Attachment to Lower Respiratory Tract. Science, 2006, 312, 399-399.	12.6	573
17	Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science, 2009, 325, 481-483.	12.6	544
18	Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals. American Journal of Pathology, 2007, 171, 1215-1223.	3.8	473

#	Article	IF	CITATIONS
19	Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nature Medicine, 2013, 19, 1313-1317.	30.7	412
20	Molecular Evidence of Sexual Transmission of Ebola Virus. New England Journal of Medicine, 2015, 373, 2448-2454.	27.0	380
21	Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia. MBio, 2014, 5, e00884-14.	4.1	359
22	Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science and Technology Letters, 2020, 7, 937-942.	8.7	318
23	Bat-borne virus diversity, spillover and emergence. Nature Reviews Microbiology, 2020, 18, 461-471.	28.6	298
24	Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16598-16603.	7.1	264
25	Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Scientific Reports, 2013, 3, 1686.	3.3	250
26	Replication and Shedding of MERS-CoV in Upper Respiratory Tract of Inoculated Dromedary Camels. Emerging Infectious Diseases, 2014, 20, 1999-2005.	4.3	233
27	Nosocomial Transmission of Emerging Viruses via Aerosol-Generating Medical Procedures. Viruses, 2019, 11, 940.	3.3	227
28	K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathogens, 2021, 17, e1009195.	4.7	227
29	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	13.3	221
30	Surveillance of Influenza Virus A in Migratory Waterfowl in Northern Europe. Emerging Infectious Diseases, 2007, 13, 404-411.	4.3	214
31	Correction to Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia. MBio, 2014, 5, .	4.1	209
32	Effectiveness of N95 Respirator Decontamination and Reuse against SARS-CoV-2 Virus. Emerging Infectious Diseases, 2020, 26, 2253-2255.	4.3	200
33	Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus. PLoS ONE, 2007, 2, e184.	2.5	195
34	Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerging Microbes and Infections, 2020, 9, 2673-2684.	6.5	193
35	Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through Its Receptor, Dipeptidyl Peptidase 4. Journal of Virology, 2014, 88, 9220-9232.	3.4	189
36	Mallards and Highly Pathogenic Avian Influenza Ancestral Viruses, Northern Europe. Emerging Infectious Diseases, 2005, 11, 1545-1551.	4.3	187

#	Article	IF	CITATIONS
37	Infection with MERS-CoV Causes Lethal Pneumonia in the Common Marmoset. PLoS Pathogens, 2014, 10, e1004250.	4.7	186
38	Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Science Translational Medicine, 2021, 13, .	12.4	180
39	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	4.3	175
40	Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1029-1036.	2.6	174
41	Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. ELife, 2021, 10, .	6.0	158
42	Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Journal of Virology, 2018, 92, .	3.4	155
43	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
44	Molecular Determinants of Adaptation of Highly Pathogenic Avian Influenza H7N7 Viruses to Efficient Replication in the Human Host. Journal of Virology, 2010, 84, 1597-1606.	3.4	148
45	<i>In Vitro</i> Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity. Journal of Virology, 2010, 84, 6825-6833.	3.4	146
46	Seasonal and Pandemic Human Influenza Viruses Attach Better to Human Upper Respiratory Tract Epithelium than Avian Influenza Viruses. American Journal of Pathology, 2010, 176, 1614-1618.	3.8	146
47	Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys. Science Translational Medicine, 2021, 13, .	12.4	146
48	Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. Emerging Infectious Diseases, 2020, 26, 2276-2278.	4.3	143
49	Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Scientific Reports, 2016, 6, 21878.	3.3	138
50	Possible sexual transmission of Ebola virus - Liberia, 2015. Morbidity and Mortality Weekly Report, 2015, 64, 479-81.	15.1	132
51	The Molecular Basis of the Pathogenicity of the Dutch Highly Pathogenic Human Influenza A H7N7 Viruses. Journal of Infectious Diseases, 2007, 196, 258-265.	4.0	129
52	Mutation rate and genotype variation of Ebola virus from Mali case sequences. Science, 2015, 348, 117-119.	12.6	127
53	Practical Considerations for High-Throughput Influenza A Virus Surveillance Studies of Wild Birds by Use of Molecular Diagnostic Tests. Journal of Clinical Microbiology, 2009, 47, 666-673.	3.9	126
54	Introduction of Virulence Markers in PB2 of Pandemic Swine-Origin Influenza Virus Does Not Result in Enhanced Virulence or Transmission. Journal of Virology, 2010, 84, 3752-3758.	3.4	126

#	Article	IF	CITATIONS
55	Pneumonia from Human Coronavirus in a Macaque Model. New England Journal of Medicine, 2013, 368, 1560-1562.	27.0	126
56	Severity of Pneumonia Due to New H1N1 Influenza Virus in Ferrets Is Intermediate between That Due to Seasonal H1N1 Virus and Highly Pathogenic Avian Influenza H5N1 Virus. Journal of Infectious Diseases, 2010, 201, 993-999.	4.0	121
57	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	12.6	120
58	Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans. Frontiers in Immunology, 2017, 8, 1098.	4.8	117
59	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
60	The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Does Not Replicate in Syrian Hamsters. PLoS ONE, 2013, 8, e69127.	2.5	114
61	Surveillance of Wild Birds for Avian Influenza Virus. Emerging Infectious Diseases, 2010, 16, 1827-1834.	4.3	110
62	Adaptive Evolution of MERS-CoV to Species Variation in DPP4. Cell Reports, 2018, 24, 1730-1737.	6.4	108
63	Ecology, evolution and spillover of coronaviruses from bats. Nature Reviews Microbiology, 2022, 20, 299-314.	28.6	108
64	Dam- and OxyR-Dependent Phase Variation of agn43 : Essential Elements and Evidence for a New Role of DNA Methylation. Journal of Bacteriology, 2002, 184, 3338-3347.	2.2	100
65	Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species. Journal of Virology, 2012, 86, 4370-4379.	3.4	96
66	Stability of Middle East Respiratory Syndrome Coronavirus in Milk. Emerging Infectious Diseases, 2014, 20, 1263-1264.	4.3	96
67	The emergence of the Middle East Respiratory Syndrome coronavirus. Pathogens and Disease, 2014, 71, 121-136.	2.0	95
68	SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nature Communications, 2021, 12, 4985.	12.8	94
69	Avian influenza virus: Of virus and bird ecology. Vaccine, 2009, 27, 6340-6344.	3.8	93
70	Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Scientific Reports, 2012, 2, 736.	3.3	93
71	Epidemiology of low pathogenic avian influenza viruses in wild birds. OIE Revue Scientifique Et Technique, 2009, 28, 49-58.	1.2	91
72	A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Science Advances, 2020, 6, eaba8399.	10.3	89

#	Article	IF	CITATIONS
73	Postmortem Stability of Ebola Virus. Emerging Infectious Diseases, 2015, 21, 856-859.	4.3	81
74	Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. Npj Vaccines, 2017, 2, 28.	6.0	81
75	Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments. Emerging Infectious Diseases, 2015, 21, 1243-1246.	4.3	79
76	Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. Journal of General Virology, 2016, 97, 344-355.	2.9	77
77	Protection of Mice against Lethal Infection with Highly Pathogenic H7N7 Influenza A Virus by Using a Recombinant Low-Pathogenicity Vaccine Strain. Journal of Virology, 2005, 79, 12401-12407.	3.4	76
78	Understanding Ebola Virus Transmission. Viruses, 2015, 7, 511-521.	3.3	76
79	Efficacy of an Adjuvanted Middle East Respiratory Syndrome Coronavirus Spike Protein Vaccine in Dromedary Camels and Alpacas. Viruses, 2019, 11, 212.	3.3	75
80	Insertion of a Multibasic Cleavage Motif into the Hemagglutinin of a Low-Pathogenic Avian Influenza H6N1 Virus Induces a Highly Pathogenic Phenotype. Journal of Virology, 2010, 84, 7953-7960.	3.4	73
81	Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos, 2011, 120, 748-755.	2.7	71
82	Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster. PLoS Neglected Tropical Diseases, 2013, 7, e2024.	3.0	71
83	Persistence of Ebola Virus in Sterilized Wastewater. Environmental Science and Technology Letters, 2015, 2, 245-249.	8.7	71
84	Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes. PLoS Pathogens, 2013, 9, e1003443.	4.7	70
85	Animal models of Middle East respiratory syndrome coronavirus infection. Antiviral Research, 2015, 122, 28-38.	4.1	66
86	Towards improved influenza A virus surveillance in migrating birds. Vaccine, 2006, 24, 6729-6733.	3.8	64
87	Comparative Analysis of Ebola Virus Glycoprotein Interactions With Human and Bat Cells. Journal of Infectious Diseases, 2011, 204, S840-S849.	4.0	64
88	Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot (Uria aalge). Archives of Virology, 2005, 150, 1685-1692.	2.1	62
89	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
90	Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses. PLoS Pathogens, 2016, 12, e1005780.	4.7	60

#	Article	IF	CITATIONS
91	Animal models of disease shed light on Nipah virus pathogenesis and transmission. Journal of Pathology, 2015, 235, 196-205.	4.5	58
92	Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2041-2048.	2.6	56
93	Foodborne Transmission of Nipah Virus in Syrian Hamsters. PLoS Pathogens, 2014, 10, e1004001.	4.7	56
94	Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Research, 2017, 143, 30-37.	4.1	56
95	Outbreaks in a Rapidly Changing Central Africa — Lessons from Ebola. New England Journal of Medicine, 2018, 379, 1198-1201.	27.0	56
96	Nipah Virus Transmission in a Hamster Model. PLoS Neglected Tropical Diseases, 2011, 5, e1432.	3.0	55
97	A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25057-25067.	7.1	53
98	ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. Nature Communications, 2021, 12, 5868.	12.8	52
99	Phase Variation of Ag43 Is Independent of the Oxidation State of OxyR. Journal of Bacteriology, 2003, 185, 2203-2209.	2.2	50
100	Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali. PLoS Neglected Tropical Diseases, 2013, 7, e2582.	3.0	49
101	1918 H1N1 Influenza Virus Replicates and Induces Proinflammatory Cytokine Responses in Extrarespiratory Tissues of Ferrets. Journal of Infectious Diseases, 2018, 217, 1237-1246.	4.0	49
102	Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds. OIE Revue Scientifique Et Technique, 2009, 28, 69-92.	1.2	47
103	An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.	30.7	47
104	A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Neglected Tropical Diseases, 2019, 13, e0007462.	3.0	46
105	Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nature Microbiology, 2022, 7, 213-223.	13.3	45
106	Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Molecular Microbiology, 2002, 44, 521-532.	2.5	44
107	Sampling Strategies and Biodiversity of Influenza A Subtypes in Wild Birds. PLoS ONE, 2014, 9, e90826.	2.5	44
108	Highly pathogenic avian influenza (H7N7): Vaccination of zoo birds and transmission to non-poultry species. Vaccine, 2005, 23, 5743-5750.	3.8	43

#	Article	IF	CITATIONS
109	A single intranasal dose of a live-attenuated parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
110	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	5.8	42
111	Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques. Frontiers in Immunology, 2018, 9, 205.	4.8	41
112	Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190017.	4.0	41
113	Chikungunya Virus Infection, Brazzaville, Republic of Congo, 2011. Emerging Infectious Diseases, 2013, 19, 1542-1543.	4.3	39
114	High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan. Vector-Borne and Zoonotic Diseases, 2017, 17, 155-159.	1.5	38
115	Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health, 2017, 3, 41-43.	3.4	37
116	Bactrian camels shed large quantities of Middle East respiratory syndrome coronavirus (MERS-CoV) after experimental infection. Emerging Microbes and Infections, 2019, 8, 717-723.	6.5	37
117	Mounting evidence for the presence of influenza A virus in the avifauna of the Antarctic region. Antarctic Science, 2006, 18, 353-356.	0.9	36
118	Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology, 2019, 528, 64-72.	2.4	36
119	Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus. PLoS Neglected Tropical Diseases, 2017, 11, e0005532.	3.0	36
120	An Acute Immune Response to Middle East Respiratory Syndrome Coronavirus Replication Contributes to Viral Pathogenicity. American Journal of Pathology, 2016, 186, 630-638.	3.8	35
121	Pandemic 2009 H1N1 Influenza Virus Causes Diffuse Alveolar Damage in Cynomolgus Macaques. Veterinary Pathology, 2010, 47, 1040-1047.	1.7	34
122	Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets. Journal of General Virology, 2011, 92, 1410-1415.	2.9	32
123	Syrian Hamsters (<i>Mesocricetus auratus</i>) Oronasally Inoculated With a Nipah Virus Isolate From Bangladesh or Malaysia Develop Similar Respiratory Tract Lesions. Veterinary Pathology, 2015, 52, 38-45.	1.7	32
124	Dose–response and transmission: the nexus between reservoir hosts, environment and recipient hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190016.	4.0	30
125	ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. Npj Vaccines, 2021, 6, 32.	6.0	30
126	The Pattern of Influenza Virus Attachment Varies among Wild Bird Species. PLoS ONE, 2011, 6, e24155.	2.5	29

#	Article	IF	CITATIONS
127	Sodium hypochlorite disinfection of SARS-CoV-2 spiked in water and municipal wastewater. Science of the Total Environment, 2022, 807, 150766.	8.0	29
128	Aerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeys. PLoS Neglected Tropical Diseases, 2018, 12, e0006978.	3.0	26
129	The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathogens, 2022, 18, e1009914.	4.7	26
130	High prevalence of influenza A virus in ducks caught during spring migration through Sweden. Vaccine, 2006, 24, 6734-6735.	3.8	25
131	The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak. Emerging Infectious Diseases, 2016, 22, 323-6.	4.3	25
132	Prior aerosol infection with lineage A SARS-CoV-2 variant protects hamsters from disease, but not reinfection with B.1.351 SARS-CoV-2 variant. Emerging Microbes and Infections, 2021, 10, 1284-1292.	6.5	25
133	Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen. Journal of Virological Methods, 2016, 237, 166-173.	2.1	24
134	Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. Science Advances, 2021, 7, eabj3627.	10.3	24
135	Influenza Virus A/Anhui/1/2013 (H7N9) Replicates Efficiently in the Upper and Lower Respiratory Tracts of Cynomolgus Macaques. MBio, 2014, 5, .	4.1	23
136	Ebola Virus Inactivation by Detergents Is Annulled in Serum. Journal of Infectious Diseases, 2017, 216, 859-866.	4.0	23
137	Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Applied and Environmental Microbiology, 2021, 87, e0031421.	3.1	23
138	High-Fat High-Sugar Diet-Induced Changes in the Lipid Metabolism Are Associated with Mildly Increased COVID-19 Severity and Delayed Recovery in the Syrian Hamster. Viruses, 2021, 13, 2506.	3.3	23
139	Assessment of Rodents as Animal Models for Reston Ebolavirus. Journal of Infectious Diseases, 2011, 204, S968-S972.	4.0	22
140	Broad and Temperature Independent Replication Potential of Filoviruses on Cells Derived From Old and New World Bat Species. Journal of Infectious Diseases, 2016, 214, S297-S302.	4.0	22
141	Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ, 2018, 6, e5979.	2.0	22
142	Pathology and Virus Distribution in Chickens Naturally Infected with Highly Pathogenic Avian Influenza A Virus (H7N7) During the 2003 Outbreak in The Netherlands. Veterinary Pathology, 2009, 46, 971-976.	1.7	21
143	Ebola Virus Persistence in Semen Ex Vivo. Emerging Infectious Diseases, 2016, 22, 289-291.	4.3	21
144	Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integrative and Comparative Biology, 2016, 56, 317-329.	2.0	21

#	Article	IF	CITATIONS
145	Factors determining human-to-human transmissibility of zoonotic pathogens via contact. Current Opinion in Virology, 2017, 22, 7-12.	5.4	21
146	SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses, 2018, 10, 727.	3.3	21
147	Tackling Ebola: new insights into prophylactic and therapeutic intervention strategies. Genome Medicine, 2011, 3, 5.	8.2	20
148	Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas. PLoS ONE, 2012, 7, e38256.	2.5	20
149	Comparison of the Aerosol Stability of 2 Strains of <i>Zaire ebolavirus</i> From the 1976 and 2013 Outbreaks. Journal of Infectious Diseases, 2016, 214, S290-S293.	4.0	20
150	Disinfection of Ebola Virus in Sterilized Municipal Wastewater. PLoS Neglected Tropical Diseases, 2017, 11, e0005299.	3.0	20
151	Characterization of avian influenza virus attachment patterns to human and pig tissues. Scientific Reports, 2018, 8, 12215.	3.3	20
152	Serological Evidence for Henipa-like and Filo-like Viruses in Trinidad Bats. Journal of Infectious Diseases, 2020, 221, S375-S382.	4.0	20
153	Does influenza A affect body condition of wild mallard ducks, or <i>vice versa</i> ? A reply to Flint and Franson. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2347-2349.	2.6	19
154	The immune response to Nipah virus infection. Archives of Virology, 2012, 157, 1635-1641.	2.1	19
155	Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants. PLoS ONE, 2016, 11, e0146251.	2.5	19
156	Disease reservoirs: from conceptual frameworks to applicable criteria. Emerging Microbes and Infections, 2017, 6, 1-5.	6.5	19
157	Middle East Respiratory Syndrome Coronavirus Antibodies in Dromedary Camels, Bangladesh, 2015. Emerging Infectious Diseases, 2018, 24, 926-928.	4.3	19
158	Rousettus aegyptiacus Bats Do Not Support Productive Nipah Virus Replication. Journal of Infectious Diseases, 2020, 221, S407-S413.	4.0	19
159	Role of Wildlife in Emergence of Ebola Virus in Kaigbono (Likati), Democratic Republic of the Congo, 2017. Emerging Infectious Diseases, 2020, 26, 2205-2209.	4.3	19
160	Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: An institutional comparative review. Veterinary Pathology, 2022, 59, 673-680.	1.7	19
161	Single-Nucleotide Polymorphisms in Human NPC1 Influence Filovirus Entry Into Cells. Journal of Infectious Diseases, 2018, 218, S397-S402.	4.0	18
162	Peripheral immune response in the African green monkey model following Nipah-Malaysia virus exposure by intermediate-size particle aerosol. PLoS Neglected Tropical Diseases, 2019, 13, e0007454.	3.0	18

#	Article	IF	CITATIONS
163	Delayed recognition of Ebola virus disease is associated with longer and larger outbreaks. Emerging Microbes and Infections, 2020, 9, 291-301.	6.5	18
164	Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Science Alliance, 2022, 5, e202101314.	2.8	18
165	The Serological Prevalence of Rabies Virus-Neutralizing Antibodies in the Bat Population on the Caribbean Island of Trinidad. Viruses, 2020, 12, 178.	3.3	17
166	MERS-CoV: the intermediate host identified?. Lancet Infectious Diseases, The, 2013, 13, 827-828.	9.1	16
167	European H16N3 Gull Influenza Virus Attaches to the Human Respiratory Tract and Eye. PLoS ONE, 2013, 8, e60757.	2.5	16
168	Repository of Eurasian influenza A virus hemagglutinin and neuraminidase reverse genetics vectors and recombinant viruses. Vaccine, 2010, 28, 5803-5809.	3.8	15
169	Chikungunya Outbreak in the Republic of the Congo, 2019—Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation. Viruses, 2020, 12, 1020.	3.3	15
170	SARS-CoV-2 vaccines: anamnestic response in previously infected recipients. Cell Research, 2021, 31, 827-828.	12.0	15
171	Long-term wildlife mortality surveillance in northern Congo: a model for the detection of Ebola virus disease epizootics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180339.	4.0	14
172	OraSure InteliSwabâ"¢ Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern—Alpha, Beta, Gamma, Delta, and Omicron. Viruses, 2022, 14, 543.	3.3	14
173	Serological evidence of arenavirus circulation among fruit bats in Trinidad. PLoS ONE, 2017, 12, e0185308.	2.5	13
174	Updated and Validated Pan-Coronavirus PCR Assay to Detect All Coronavirus Genera. Viruses, 2021, 13, 599.	3.3	13
175	Authentication of the R06E Fruit Bat Cell Line. Viruses, 2012, 4, 889-900.	3.3	12
176	Interpretation of Negative Molecular Test Results in Patients With Suspected or Confirmed Ebola Virus Disease: Report of Two Cases. Open Forum Infectious Diseases, 2015, 2, ofv137.	0.9	11
177	The Use of Large-Particle Aerosol Exposure to Nipah Virus to Mimic Human Neurological Disease Manifestations in the African Green Monkey. Journal of Infectious Diseases, 2020, 221, S419-S430.	4.0	11
178	Epidemiology of Avian Influenza. Monographs in Virology, 2008, , 1-10.	0.6	10
179	Novel Hendra Virus Variant Circulating in Black Flying Foxes and Grey-Headed Flying Foxes, Australia. Emerging Infectious Diseases, 2022, 28, 1043-1047.	4.3	10
180	Mapping the Specific Amino Acid Residues That Make Hamster DPP4 Functional as a Receptor for Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2016, 90, 5499-5502.	3.4	9

#	Article	IF	CITATIONS
181	Long-Range Polymerase Chain Reaction Method for Sequencing the Ebola Virus Genome From Ecological and Clinical Samples. Journal of Infectious Diseases, 2018, 218, S301-S304.	4.0	8
182	Middle East Respiratory Syndrome-Coronavirus Seropositive Bactrian Camels, Mongolia. Vector-Borne and Zoonotic Diseases, 2021, 21, 128-131.	1.5	8
183	Immunogenicity of Low-Dose Prime-Boost Vaccination of mRNA Vaccine CV07050101 in Non-Human Primates. Viruses, 2021, 13, 1645.	3.3	8
184	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	4.0	7
185	Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum. Emerging Infectious Diseases, 2020, 26, .	4.3	7
186	PERPETUATION OF AVIAN INFLUENZA IN THE AMERICAS: EXAMINING THE ROLE OF SHOREBIRDS IN PATAGONIA. Auk, 2008, 125, 494-495.	1.4	6
187	Lek-associated movement of a putative Ebolavirus reservoir, the hammer-headed fruit bat (Hypsignathus monstrosus), in northern Republic of Congo. PLoS ONE, 2019, 14, e0223139.	2.5	6
188	Surface‒Aerosol Stability and Pathogenicity of Diverse Middle East Respiratory Syndrome Coronavirus Strains, 2012‒2018. Emerging Infectious Diseases, 2021, 27, 3052-3062.	4.3	6
189	A Novel Field-Deployable Method for Sequencing and Analyses of Henipavirus Cenomes From Complex Samples on the MinION Platform. Journal of Infectious Diseases, 2020, 221, S383-S388.	4.0	5
190	A framework for nosocomial transmission of emerging coronaviruses. Infection Control and Hospital Epidemiology, 2021, 42, 639-641.	1.8	5
191	Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants Circulating in Dromedary Camels in Jordan. Viruses, 2021, 13, 592.	3.3	5
192	Zaire ebolavirus surveillance near the Bikoro region of the Democratic Republic of the Congo during the 2018 outbreak reveals presence of seropositive bats. PLoS Neglected Tropical Diseases, 2022, 16, e0010504.	3.0	5
193	Avian Influenza A virus in ducks migrating through Sweden. International Congress Series, 2004, 1263, 771-772.	0.2	4
194	Camelid Inoculation with Middle East Respiratory Syndrome Coronavirus: Experimental Models of Reservoir Host Infection. Viruses, 2020, 12, 1370.	3.3	4
195	Bacillus paranthracis Isolate from Blood of Fatal Ebola Virus Disease Case. Pathogens, 2020, 9, 475.	2.8	4
196	Evaluation of viral load in patients with Ebola virus disease in Liberia: a retrospective observational study. Lancet Microbe, The, 2022, 3, e533-e542.	7.3	4
197	Ecology and Evolution of Avian Influenza Viruses. , 2011, , 729-749.		3
198	Development and validation of portable, field-deployable Ebola virus point-of-encounter diagnostic assay for wildlife surveillance. One Health Outlook, 2021, 3, 9.	3.4	3

#	Article	IF	CITATIONS
199	Risk Factors for Middle East Respiratory Syndrome Coronavirus Infection among Camel Populations, Southern Jordan, 2014–2018. Emerging Infectious Diseases, 2021, 27, 2301-2311.	4.3	3
200	Nipah Virus Detection at Bat Roosts after Spillover Events, Bangladesh, 2012–2019. Emerging Infectious Diseases, 2022, 28, 1384-1392.	4.3	3
201	Compatibility of Maximum-Containment Virus–Inactivation Protocols With Identification of Bacterial Coinfections by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of Infectious Diseases, 2018, 218, S297-S300.	4.0	2
202	Three-Week Old Pigs Are Not Susceptible to Productive Infection with SARS-COV-2. Microorganisms, 2022, 10, 407.	3.6	2
203	Editorial: Emerging Infectious and Vector-Borne Diseases: A Global Challenge. Frontiers in Public Health, 2020, 8, 214.	2.7	1
204	206. Cytokine, 2013, 63, 291-292.	3.2	0
205	Reply to Colebunders. Clinical Infectious Diseases, 2017, 64, 232.2-232.	5.8	Ο
206	2311. Bacteremia Is Not Commonly Detected in Ebola Virus Disease. Open Forum Infectious Diseases, 2019, 6, S792-S792.	0.9	0
207	Studying Evolutionary Adaptation of MERS-CoV. Methods in Molecular Biology, 2020, 2099, 3-8.	0.9	0
208	Editorial: Ecology and Evolution of Coronaviruses: Implications for Human Health. Frontiers in Public Health, 0, 10, .	2.7	0