List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyoxometalate systems to probe catalyst environment and structure in water oxidation catalysis. Advances in Inorganic Chemistry, 2022, , 351-372.	1.0	0
2	Structurally Precise Two-Transition-Metal Water Oxidation Catalysts: Quantifying Adjacent 3d Metals by Synchrotron X-Radiation Anomalous Dispersion Scattering. Inorganic Chemistry, 2022, 61, 6252-6262.	4.0	7
3	A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Communications Chemistry, 2021, 4, .	4.5	7
4	Tafel Slope Analyses for Homogeneous Catalytic Reactions. Catalysts, 2021, 11, 87.	3.5	16
5	Heterogenization of polyoxometalates as solid catalysts in aerobic oxidation of glycerol. Catalysis Science and Technology, 2020, 10, 3771-3781.	4.1	6
6	Aerobic oxidation of glycerol catalyzed by M salts of PMo12O403-(M = K+, Zn2+, Cu2+, Al3+, Cr3+, Fe3+). Applied Catalysis A: General, 2019, 579, 52-57.	4.3	6
7	Synergetic Catalysis of Copper and Iron in Oxidation of Reduced Keggin Heteropolytungstates by Dioxygen. Inorganic Chemistry, 2018, 57, 311-318.	4.0	10
8	Speciation and Dynamics in the [Co ₄ V ₂ W ₁₈ O ₆₈] ^{10–} /Co(II) _{aq} / Catalytic Water Oxidation System. ACS Catalysis, 2018, 8, 11952-11959.	Ca Q.2 sub:	>< ib9 x
9	Multi-Tasking POM Systems. Frontiers in Chemistry, 2018, 6, 365.	3.6	22
10	Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10â^' Polyoxometalate Water Oxidation Catalyst. Journal of Cluster Science, 2017, 28, 839-852.	3.3	6
11	Stabilization of Polyoxometalate Water Oxidation Catalysts on Hematite by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 35048-35056.	8.0	39
12	Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru ₄ O ₄ (OH) ₂ (H ₂ O) ₄ }(γ-SiW ₁₀ Journal of the American Chemical Society, 2016, 138, 2617-2628.	01 317 0>30	6< ≴su b>) <sul< td=""></sul<>
13	[{Ni ₄ (OH) ₃ AsO ₄ } ₄ (<i>B</i> â€Î±â€PW ₉ O <sub A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity. Chemistry - A European Journal, 2015, 21, 17363-17370.</sub 	0>343.3	>) ₄₅₂
14	Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design. Chemical Science, 2015, 6, 5531-5543.	7.4	67
15	Oxidation of Reduced Keggin Heteropolytungstates by Dioxygen in Water Catalyzed by Cu(II). ACS Catalysis, 2015, 5, 7048-7054.	11.2	17
16	Polyoxometalate Multiâ€Electronâ€Transfer Catalytic Systems for Water Splitting. European Journal of Inorganic Chemistry, 2014, 2014, 635-644.	2.0	85
17	Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Physical Chemistry Chemical Physics, 2014, 16, 11942-11949.	2.8	16
	Madistan Enhanced Mister Ocidation Hainer		

Mediator Enhanced Water Oxidation Using Rb₄[Ru^{II}(bpy)₃]₅[{Ru^{III}₄O₄O₄C₄O₄C₄S₄C₄S<

#	Article	IF	CITATIONS
19	A Noble-Metal-Free, Tetra-nickel Polyoxotungstate Catalyst for Efficient Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2014, 136, 14015-14018.	13.7	213
20	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	13.7	260
21	Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst. Journal of Catalysis, 2013, 307, 48-54.	6.2	95
22	An Inorganic Chromophore Based on a Molecular Oxide Supported Metal Carbonyl Cluster: [P2W17O61{Re(CO)3}3{ORb(H2O)}(μ3-OH)]9–. Inorganic Chemistry, 2013, 52, 13490-13495.	4.0	24
23	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] ^{Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118}	10ậ€"13.7	¹ 196
24	Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10â^² for highly efficient electrocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 2654.	30.8	124
25	Di- and Tri-Cobalt Silicotungstates: Synthesis, Characterization, and Stability Studies. Inorganic Chemistry, 2013, 52, 1018-1024.	4.0	15
26	A Hexanuclear Cobalt(II) Cluster Incorporated in a Bananaâ€Shaped Tungstovanadate: [(Co(OH ₂)Co ₂ VW ₉ O ₃₄) ₂ (VW ₆ O European Journal of Inorganic Chemistry, 2013, 2013, 1720-1725.	< sub >26<	/ ஊம் >)] <sup< td=""></sup<>
27	In Situ Recrystallization of Polyoxometalates: From 0D Architectures to 2D Inorganic–Organic Hybrids. European Journal of Inorganic Chemistry, 2013, 2013, 1827-1834.	2.0	4
28	Voltammetric Determination of the Reversible Potentials for [{Ru ₄ O ₄ (OH) ₂ (H ₂ O) ₄ }(\hat{I}^3 -SiW ₁₀ C over the pH Range of $2\hat{a}\in$ "12: Electrolyte Dependence and Implications for Water Oxidation Catalysis. Inorganic Chemistry, 2013, 52, 11986-11996.)∢sub>36 4.0) <sub< td=""></sub<>
29	Bis(4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine)ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	3.6	18
30	Multi-Electron-Transfer Catalysts Needed for Artificial Photosynthesis. Materials Research Society Symposia Proceedings, 2012, 1387, 1.	0.1	7
31	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	38.1	678
32	A nickel containing polyoxometalate water oxidation catalyst. Dalton Transactions, 2012, 41, 13043.	3.3	111
33	Detailed Electrochemical Studies of the Tetraruthenium Polyoxometalate Water Oxidation Catalyst in Acidic Media: Identification of an Extended Oxidation Series using Fourier Transformed Alternating Current Voltammetry. Inorganic Chemistry, 2012, 51, 11521-11532.	4.0	33
34	A dodecanuclear Zn cluster sandwiched by polyoxometalate ligands. Dalton Transactions, 2012, 41, 9908.	3.3	16
35	Wateroxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(μ-OH)(H2O)3}(Si2W19O70)]11 ^{â^²} . Dalton Transactions, 2012, 41, 2084-2090. 	3.3	87
36	Revisiting the Polyoxometalate-Based Late-Transition-Metal-Oxo Complexes: The "Oxo Wall―Stands. Inorganic Chemistry, 2012, 51, 7025-7031.	4.0	86

#	Article	IF	CITATIONS
37	Spectroscopic Studies of Light-driven Water Oxidation Catalyzed by Polyoxometalates. Industrial & Engineering Chemistry Research, 2012, 51, 11850-11859.	3.7	37
38	Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 229-242.	0.3	0
39	Mechanistic Studies of O ₂ -Based Sulfoxidations Catalyzed by NO _{<i>x</i>} /Br Systems. ACS Catalysis, 2011, 1, 1364-1370.	11.2	16
40	Structural and mechanistic studies of tunable, stable, fast multi-cobalt water oxidation catalysts. Proceedings of SPIE, 2011, , .	0.8	1
41	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	2.3	37
42	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	13.7	336
43	The role of the heteroatom (XÂ=ÂSiIV, PV, and SVI) on the reactivity of {γ-[(H2O)Rulll(μ-OH)2RullI(H2O)][X n+W10O36]}(8â^'n)â^' with the O2 molecule. Theoretical Chemistry Accounts, 2011, 130, 197-207.	1.4	9
44	Interfacial charge transfer dynamics in TiO 2 -sensitizer-Ru 4 POM photocatalytic systems for water oxidation. , 2011, , .		5
45	Insights into Photoinduced Electron Transfer Between [Ru(mptpy) ₂] ⁴⁺ (mptpy) Tj ETC Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 6284-6297.	2,5 91 1 0.72	34314 rgBT 0 27
46	Insights into the Mechanism of O ₂ Formation and Release from the Mn ₄ O ₄ L ₆ "Cubane―Cluster. Journal of Physical Chemistry A, 2010, 114, 11417-11424.	2.5	27
47	Computational Studies of the Geometry and Electronic Structure of an All-Inorganic and Homogeneous Tetra-Ru-Polyoxotungstate Catalyst for Water Oxidation and Its Four Subsequent One-Electron Oxidized Forms. Journal of Physical Chemistry A, 2010, 114, 535-542.	2.5	39
48	Insights into Photoinduced Electron Transfer between [Ru(bpy)3]2+ and [S2O8]2â°' in Water: Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 73-80.	2.5	51
49	A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals. Science, 2010, 328, 342-345.	12.6	1,354
50	Concerted Protonâ^'Electron Transfer to Dioxygen in Water. Journal of the American Chemical Society, 2010, 132, 11678-11691.	13.7	45
51	Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chemical Communications, 2010, 46, 2784.	4.1	145
52	Vicinal Dinitridoruthenium‧ubstituted Polyoxometalates γâ€{XW ₁₀ O ₃₈ {RuN} ₂] ^{6â^'} (X=Si or Ge). Chemistry - A European Journal, 2009, 15, 10233-10243.	3.3	33
53	Structurally Characterized Iridium(III)-Containing Polytungstate and Catalytic Water Oxidation Activity. Inorganic Chemistry, 2009, 48, 5596-5598.	4.0	88
54	Nitrogen-Atom Transfer from [PW ₁₁ O ₃₉ Ru ^{VI} N] ^{4â^'} to PPh ₃ . Inorganic Chemistry, 2009, 48, 9436-9443.	4.0	18

#	Article	IF	CITATIONS
55	Mechanism of the Divanadium-Substituted Polyoxotungstate [γ-1,2-H ₂ SiV ₂ W ₁₀ O ₄₀] ^{4â°'} Catalyzed Olefin Epoxidation by H ₂ O ₂ : A Computational Study. Inorganic Chemistry, 2009, 48, 1871-1878.	4.0	29
56	Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Journal of the American Chemical Society, 2009, 131, 17360-17370.	13.7	162
57	Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. Journal of the American Chemical Society, 2009, 131, 7522-7523.	13.7	330
58	Dioxygen and Water Activation Processes on Multi-Ru-Substituted Polyoxometalates: Comparison with the "Blue-Dimer―Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 6844-6854.	13.7	88
59	An Allâ€Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Angewandte Chemie - International Edition, 2008, 47, 3896-3899.	13.8	559
60	Late transition metal-oxo compounds and open-framework materials that catalyze aerobic oxidations. Advances in Inorganic Chemistry, 2008, , 245-272.	1.0	22
61	Terminal Gold-Oxo Complexes. Journal of the American Chemical Society, 2007, 129, 11118-11133.	13.7	72
62	Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems. Comptes Rendus Chimie, 2007, 10, 305-312.	0.5	27
63	A density functional study of geometry and electronic structures of [(SiO4)(MIII)2(OH)2W10O32]4â^', M=Mo, Ru and Rh. Journal of Molecular Catalysis A, 2007, 262, 227-235.	4.8	10
64	Electron capture and transport by heteropolyanions: Multi-functional electrolytes for biomass-based fuel cells. Journal of Molecular Catalysis A, 2007, 262, 59-66.	4.8	8
65	Catalysts for Aerobic Decontamination of Chemical Warfare Agents under Ambient Conditions. ACS Symposium Series, 2007, , 198-209.	0.5	7
66	The Role of the Central Atom in Structure and Reactivity of Polyoxometalates with Adjacent d-Electron Metal Sites. Computational and Experimental Studies of Î ³ -[(Xn+O4)RuIII2(OH)2(MFM)10O32](8-n)-for MFM= Mo and W, and X = AlIII, SiIV, PV, and SVI. Journal of Physical Chemistry B, 2006, 110, 170-173.	2.6	42
67	Density Functional Study of the Roles of Chemical Composition of Di-Transition-Metal-Substituted Î ³ -Keggin Polyoxometalate Anions. Journal of Physical Chemistry B, 2006, 110, 5230-5237.	2.6	15
68	The True Nature of the Di-iron(III) Î ³ -Keggin Structure in Water:Â Catalytic Aerobic Oxidation and Chemistry of an Unsymmetrical Trimer. Journal of the American Chemical Society, 2006, 128, 11268-11277.	13.7	105
69	Reduction of O2to Superoxide Anion (O2•-) in Water by Heteropolytungstate Cluster-Anions. Journal of the American Chemical Society, 2006, 128, 17033-17042.	13.7	72
70	New complexes and materials for O2-based oxidations. Journal of Molecular Catalysis A, 2006, 251, 234-238.	4.8	22
71	Ionic-strength dependence of electron-transfer reactions of Keggin heteropolytungstates: Mechanistic probes of O2 activation in water. Journal of Molecular Catalysis A, 2006, 251, 255-262.	4.8	9
72	Computational Modeling of Di-Transition-Metal-Substituted ?-Keggin Polyoxometalate Anions. Structural Refinement of the Protonated Divacant Lacunary Silicodecatungstate ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
73	Electron Exchange between α-Keggin Tungstoaluminates and a Well-Defined Cluster-Anion Probe for Studies in Electron Transfer. Inorganic Chemistry, 2005, 44, 8955-8966.	4.0	40
74	Asymmetric terminal ligation on substituted sites in a disorder-free Keggin anion, [β-SiFe2W10O36(OH)2(H2O)Cl]5–. Dalton Transactions, 2005, , 2017.	3.3	27
75	Computational Modeling of Di-Transition-Metal-Substituted Î ³ -Keggin Polyoxometalate Anions. Structural Refinement of the Protonated Divacant Lacunary Silicodecatungstate. Inorganic Chemistry, 2004, 43, 7702-7708.	4.0	63
76	Peroxynitrite Reactions with Dimethylsulfide and Dimethylselenide:  An Experimental Study. Journal of Physical Chemistry A, 2004, 108, 289-294.	2.5	12
77	Theoretical Studies of the Reaction Mechanisms of Dimethylsulfide and Dimethylselenide with Peroxynitrite. Journal of Physical Chemistry A, 2003, 107, 5862-5873.	2.5	21
78	Can the Ebselen Derivatives Catalyze the Isomerization of Peroxynitrite to Nitrate?. Journal of the American Chemical Society, 2003, 125, 3877-3888.	13.7	27
79	Catalysts for selective aerobic oxidation under ambient conditions. Catalysis By Metal Complexes, 2003, , 227-264.	0.6	7
80	Evaluation of antioxidant activity using peroxynitrite as a source of radicals. Methods in Enzymology, 2002, 359, 366-379.	1.0	1
81	Catalysis of ascorbic acid oxidation with peroxynitrite by biomimetic Cu -complexes. Reaction Kinetics and Catalysis Letters, 2002, 77, 277-285.	0.6	7
82	A Homogeneous Catalyst for Selective O2Oxidation at Ambient Temperature. Diversity-Based Discovery and Mechanistic Investigation of Thioether Oxidation by the Au(III)Cl2NO3(thioether)/O2System. Journal of the American Chemical Society, 2001, 123, 1625-1635.	13.7	105
83	Does Peroxynitrite Partition between Aqueous and Gas Phases? Implication for Lipid Peroxidation. Chemical Research in Toxicology, 2001, 14, 1232-1238.	3.3	12
84	Catalytic aerobic oxidation of 2-chloroethyl ethylsulfide, a mustard simulant, under ambient conditions. Journal of Molecular Catalysis A, 2001, 176, 49-63.	4.8	42
85	Highly efficient and stable catalyst for peroxynitrite decomposition. Canadian Journal of Chemistry, 2001, 79, 792-794.	1.1	17
86	Highly efficient and stable catalyst for peroxynitrite decomposition. Canadian Journal of Chemistry, 2001, 79, 792-794.	1.1	3
87	Synthesis, crystal structures, Mössbauer spectra, and redox properties of binuclear and tetranuclear iron-sulfur nitrosyl clusters. Russian Chemical Bulletin, 2000, 49, 444-451.	1.5	18
88	Kinetics and mechanism of low-temperature ozone decomposition by Co-ions adsorbed on silica. Catalysis Today, 1999, 53, 715-723.	4.4	31
89	Peroxynitrite Scavenging by Different Antioxidants. Part I: Convenient Assay. Nitric Oxide - Biology and Chemistry, 1999, 3, 40-54.	2.7	118
90	Catalysis of Peroxynitrite Reactions by Manganese and Iron Porphyrins. Nitric Oxide - Biology and Chemistry, 1997, 1, 507-521.	2.7	33

#	Article	IF	CITATIONS
91	Phenazinee di-N-oxide radical cation and its reactions with hydrocarbons. Russian Chemical Bulletin, 1996, 45, 1889-1895.	1.5	3
92	Phenazine Di-N-toxide Radical Cation Reactions with Secondary Amines. Evidence for Oxygen Cation Transfer. Mendeleev Communications, 1993, 3, 142-143.	1.6	1
93	Studies on the Mechanism of Gif Reactions. , 1993, , 225-242.		6
94	Formation and redox properties of a complex of phenazine di-N-oxide with a proton. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 655-659.	0.0	1
95	The Efficient Oxidation of Alkanes by Hydrogen Peroxide in Pyridine Mixed Solvents Catalysed by Copper and Other Transition Metal Salts. Mendeleev Communications, 1991, 1, 115-116.	1.6	10
96	Oxidation of Ethylbenzene by Phenazine-Di-N-Oxide Radical Cation. Studies in Surface Science and Catalysis, 1991, 66, 641-647.	1.5	1
97	Electrogenerated cation radicals of heteroaromatic N-oxides and oxidation of cyclohexane induced by them. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 886-890.	0.0	1
98	Cation Radicals of Heterocyclic N-Oxides and Their Reactions. Heterocycles, 1989, 28, 677.	0.7	7
99	Cation-radical of pyridine N-oxide and its reactions with Câ^'H bonds. Reaction Kinetics and Catalysis Letters, 1988, 37, 307-312.	0.6	6
100	Oxidation of saturated hydrocarbons by hydrogen peroxide in pyridine solution catalysed by copper and iron perchlorates. Journal of the Chemical Society Chemical Communications, 1988, , 936.	2.0	27
101	Route of autooxidation of organic compounds through a metal ion and bromide catalysis. Petroleum Chemistry: USSR (English Translation of Neftekhimiya), 1986, 26, 234-246.	0.0	1
102	Oxidation rate of saturated hydrocarbons by permanganate in aqueous solutions. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1982, 31, 1473-1474.	0.0	1
103	Mechanism and parameters of oxidation of alkylaromatic hydrocarbons in the presence of cobalt and bromine ions. Petroleum Chemistry: USSR (English Translation of Neftekhimiya), 1978, 18, 145-153.	0.0	2
104	Insights into the Mechanism of H2O2-based Olefin Epoxidation Catalyzed by the Lacunary [γ-(SiO4) W10O32H4]4â~and di-V-substituted-γ-Keggin [γ-1,2-H2SiV2W10O40]4â~Polyoxometalates. A Computational Study. , 0, , 215-230.		0