Nick D Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3490059/publications.pdf

Version: 2024-02-01

26613 36303 12,436 127 51 107 h-index citations g-index papers 135 135 135 9905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. Journal of Fungi (Basel, Switzerland), 2022, 8, 90.	3.5	4
2	Live-cell imaging of rapid calcium dynamics using fluorescent, genetically-encoded GCaMP probes with Aspergillus fumigatus. Fungal Genetics and Biology, 2021, 151, 103470.	2.1	7
3	Characterisation of Aspergillus fumigatus Endocytic Trafficking within Airway Epithelial Cells Using High-Resolution Automated Quantitative Confocal Microscopy. Journal of Fungi (Basel, Switzerland), 2021, 7, 454.	3 . 5	14
4	Courtship Ritual of Male and Female Nuclei during Fertilization in Neurospora crassa. Microbiology Spectrum, 2021, 9, e0033521.	3.0	4
5	Phagolysosomal Survival Enables Non-lytic Hyphal Escape and Ramification Through Lung Epithelium During Aspergillus fumigatus Infection. Frontiers in Microbiology, 2020, 11, 1955.	3.5	24
6	Cell Wall Composition Heterogeneity between Single Cells in Aspergillus fumigatus Leads to Heterogeneous Behavior during Antifungal Treatment and Phagocytosis. MBio, 2020, 11, .	4.1	25
7	Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26. Molecular Microbiology, 2020, 114, 521-535.	2.5	1
8	The Dynamic Influence of Olorofim (F901318) on the Cell Morphology and Organization of Living Cells of Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2020, 6, 47.	3.5	17
9	Flow cytometry and FACS applied to filamentous fungi. Fungal Biology Reviews, 2019, 33, 1-15.	4.7	45
10	Inducible Cell Fusion Permits Use of Competitive Fitness Profiling in the Human Pathogenic Fungus Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
11	Spatio-temporal MAP kinase dynamics mediate cell behavior coordination during fungal somatic cell fusion. Journal of Cell Science, 2018, 131, .	2.0	24
12	Danger signals activate a putative innate immune system during regeneration in a filamentous fungus. PLoS Genetics, 2018, 14, e1007390.	3 . 5	27
13	Lung colonization by Aspergillus fumigatus is controlled by ZNF77. Nature Communications, 2018, 9, 3835.	12.8	40
14	Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum. PLoS ONE, 2018, 13, e0195634.	2.5	21
15	Development of an adaptable headspace sampling method for metabolic profiling of the fungal volatome. Analyst, The, 2018, 143, 4155-4162.	3.5	22
16	Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	65
17	Mutual independence of alkaline―and calciumâ€mediated signalling in <i>Aspergillus fumigatus</i> refutes the existence of a conserved druggable signalling nexus. Molecular Microbiology, 2017, 106, 861-875.	2.5	12
18	Caspofungin-Mediated Growth Inhibition and Paradoxical Growth in Aspergillus fumigatus Involve Fungicidal Hyphal Tip Lysis Coupled with Regenerative Intrahyphal Growth and Dynamic Changes in \hat{I}^2 -1,3-Glucan Synthase Localization. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	49

#	Article	IF	Citations
19	Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging. Nature Protocols, 2017, 12, 1588-1619.	12.0	58
20	D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function. PLoS ONE, 2017, 12, e0169920.	2.5	35
21	Evaluation of Corneal Cross-Linking for Treatment of Fungal Keratitis: Using Confocal Laser Scanning Microscopy on an Ex Vivo Human Corneal Model. , 2016, 57, 6367.		27
22	Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus. PLoS Genetics, 2016, 12, e1005977.	3.5	43
23	Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi <i>Neurospora crassa</i> and <i>Fusarium graminearum</i> . Molecular Microbiology, 2016, 100, 542-559.	2.5	46
24	Searching for the Optimal Fluorophore to Label Antimicrobial Peptides. ACS Combinatorial Science, 2016, 18, 689-696.	3.8	43
25	Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11877-11882.	7.1	32
26	Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nature Communications, 2016, 7, 10940.	12.8	112
27	Electrophilic, Activation-Free Fluorogenic Reagent for Labeling Bioactive Amines. Bioconjugate Chemistry, 2016, 27, 1430-1434.	3.6	22
28	Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genetics and Biology, 2015, 82, 193-200.	2.1	30
29	Calcium-Mediated Induction of Paradoxical Growth following Caspofungin Treatment Is Associated with Calcineurin Activation and Phosphorylation in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 4946-4955.	3.2	39
30	Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS ONE, 2015, 10, e0138008.	2.5	20
31	CDC-42 and RAC-1 regulate opposite chemotropisms in <i>Neurospora crassa</i> . Journal of Cell Science, 2014, 127, 1953-1965.	2.0	41
32	The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathogens, 2014, 10, e1004413.	4.7	151
33	Activation of a TRP-like channel and intracellular calcium dynamics during phospholipase C-mediated cell death. Journal of Cell Science, 2014, 127, 3817-29.	2.0	16
34	Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis in <scp><i>N</i></scp> <i>eurospora crassa</i> . Molecular Microbiology, 2014, 92, 1357-1374.	2.5	46
35	Colletotrichum lindemuthianum exhibits different patterns of nuclear division at different stages in its vegetative life cycle. Mycologia, 2013, 105, 795-801.	1.9	2
36	Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. Fungal Biology Reviews, 2013, 26, 146-155.	4.7	53

3

#	Article	lF	CITATIONS
37	Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae. Fungal Genetics and Biology, 2013, 58-59, 105-115.	2.1	16
38	The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genetics and Biology, 2013, 56, 135-146.	2.1	22
39	Two Functional Motifs Define the Interaction, Internalization and Toxicity of the Cell-Penetrating Antifungal Peptide PAF26 on Fungal Cells. PLoS ONE, 2013, 8, e54813.	2.5	38
40	Septins Are Important for Cell Polarity, Septation and Asexual Spore Formation in Neurospora crassa and Show Different Patterns of Localisation at Germ Tube Tips. PLoS ONE, 2013, 8, e63843.	2.5	43
41	The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biology Reviews, 2012, 26, 1-11.	4.7	71
42	Evidence for tryptophan being a signal molecule that inhibits conidial anastomosis tube fusion during colony initiation in Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 896-902.	2.1	16
43	Live-Cell Imaging and Analysis Shed Light on the Complexity and Dynamics of Antimicrobial Peptide Action. Frontiers in Immunology, 2012, 3, 248.	4.8	9
44	Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome. PLoS ONE, 2012, 7, e30372.	2.5	36
45	Excitable behavior can explain the "pingâ€pong―mode of communication between cells using the same chemoattractant. BioEssays, 2012, 34, 259-266.	2.5	41
46	Concentrationâ€dependent mechanisms of cell penetration and killing by the <i>de novo</i> designed antifungal hexapeptide PAF26. Molecular Microbiology, 2012, 85, 89-106.	2.5	56
47	Heterokaryon Incompatibility Is Suppressed Following Conidial Anastomosis Tube Fusion in a Fungal Plant Pathogen. PLoS ONE, 2012, 7, e31175.	2.5	89
48	Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa. PLoS ONE, 2012, 7, e42565.	2.5	42
49	Actin organization and dynamics in filamentous fungi. Nature Reviews Microbiology, 2011, 9, 876-887.	28.6	142
50	Form follows function – The versatile fungal cytoskeleton. Fungal Biology, 2011, 115, 518-540.	2.5	38
51	Perithecium morphogenesis in Sordaria macrospora. Fungal Genetics and Biology, 2011, 48, 388-399.	2.1	55
52	Exocytosis and growth do not occur only at hyphal tips. Molecular Microbiology, 2011, 81, 4-7.	2.5	55
53	A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen <i>Aspergillus fumigatus</i> Molecular Biology of the Cell, 2011, 22, 1896-1906.	2.1	48
54	Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 2010, 75, 1021-1032.	2.5	197

#	Article	IF	CITATIONS
55	A Mutant Defective in Sexual Development Produces Aseptate Ascogonia. Eukaryotic Cell, 2010, 9, 1856-1866.	3.4	49
56	Nuclear Dynamics, Mitosis, and the Cytoskeleton during the Early Stages of Colony Initiation in Neurospora crassa. Eukaryotic Cell, 2010, 9, 1171-1183.	3.4	81
57	De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis. PLoS Genetics, 2010, 6, e1000891.	3.5	169
58	The Antifungal Activity of the Penicillium chrysogenum Protein PAF Disrupts Calcium Homeostasis in Neurospora crassa. Eukaryotic Cell, 2010, 9, 1374-1382.	3.4	67
59	F-Actin Dynamics in Neurospora crassa. Eukaryotic Cell, 2010, 9, 547-557.	3.4	139
60	Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biology, 2010, 114, 2-9.	2.5	40
61	The ham-5, rcm-1 and rco-1 genes regulate hyphal fusion in Neurospora crassa. Microbiology (United) Tj ETQq1 1	0.784314 1.8	rgBT /Overl
62	A versatile set of Lifeact-RFP expression plasmids for live-cell imaging of F-actin in filamentous fungi. Fungal Genetics Reports, 2010, 57, 8-14.	0.6	22
63	Imaging living cells of <i>Aspergillus in vitro </i> . Medical Mycology, 2009, 47, S110-S119.	0.7	41
64	Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19387-19392.	7.1	146
65	Live-Cell Imaging and Measurement of Intracellular pH in Filamentous Fungi Using a Genetically Encoded Ratiometric Probe. Eukaryotic Cell, 2009, 8, 703-712.	3.4	74
66	Algorithms for the automated analysis of cellular dynamics within living fungal colonies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 768-780.	1.5	9
67	Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology, 2009, 46, 585-594.	2.1	129
68	Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 2009, 12, 608-615.	5.1	101
69	The Neurospora crassa colonial temperature sensitive 2, 4 and 5 (cot-2, cot-4 and cot-5) genes encode regulatory and structural proteins required for hyphal elongation and branching. Fungal Genetics Reports, 2008, 55, 32-36.	0.6	6
70	Spatially Segregated SNARE Protein Interactions in Living Fungal Cells. Journal of Biological Chemistry, 2007, 282, 22775-22785.	3.4	60
71	Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 2007, 44, 1-13.	2.1	38
72	Environmental sensing and the filamentous fungal lifestyle., 2007,, 38-57.		6

#	Article	IF	CITATIONS
73	Experimentally manipulating fungi with optical tweezers*. Mycoscience, 2007, 48, 15-19.	0.8	13
74	High-precision FLIM–FRET in fixed and living cells reveals heterogeneity in a simple CFP–YFP fusion protein. Biophysical Chemistry, 2007, 127, 155-164.	2.8	55
75	Vegetative Hyphal Fusion in Filamentous Fungi. , 2006, , 87-98.		15
76	Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications. Optics Express, 2006, 14, 3065.	3.4	49
77	Conidial anastomosis tubes in filamentous fungi. FEMS Microbiology Letters, 2005, 249, 191-198.	1.8	127
78	Cross-talk between cAMP and calcium signalling in Aspergillus niger. Molecular Microbiology, 2005, 56, 268-281.	2.5	35
79	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	27.8	1,447
80	The endocytic network in plants. Trends in Cell Biology, 2005, 15, 425-433.	7.9	178
81	Spectral imaging in a snapshot. , 2005, , .		20
82	Polarisome Meets Spitzenkoì rper: Microscopy, Genetics, and Genomics Converge. Eukaryotic Cell, 2005, 4, 225-229.	3.4	252
83	Measuring fungal growth forces with optical tweezers. , 2005, , .		1
84	The so Locus Is Required for Vegetative Cell Fusion and Postfertilization Events in Neurospora crassa. Eukaryotic Cell, 2005, 4, 920-930.	3.4	121
85	Cell Biology of Conidial Anastomosis Tubes in Neurospora crassa. Eukaryotic Cell, 2005, 4, 911-919.	3.4	157
86	Role of a Mitogen-Activated Protein Kinase Pathway during Conidial Germination and Hyphal Fusion in Neurospora crassa. Eukaryotic Cell, 2004, 3, 348-358.	3.4	157
87	Live-cell Imaging of Filamentous Fungi Using Vital Fluorescent Dyes and Confocal Microscopy. Methods in Microbiology, 2004, 34, 63-87.	0.8	147
88	Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Molecular Microbiology, 2004, 52, 1437-1450.	2.5	102
89	FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. Journal of Microscopy, 2004, 214, 159-173.	1.8	522
90	Lessons from the Genome Sequence of <i>Neurospora crassa </i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572

#	Article	IF	Citations
91	A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 2004, 41, 827-841.	2.1	128
92	GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 897-910.	2.1	306
93	Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 2004, 12, 135-141.	7.7	193
94	HP1 Is Essential for DNA Methylation in Neurospora. Molecular Cell, 2004, 13, 427-434.	9.7	207
95	Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance inArabidopsisagainst wheat powdery mildew. Plant Journal, 2003, 34, 768-777.	5.7	161
96	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
97	Does endocytosis occur in fungal hyphae?. Fungal Genetics and Biology, 2003, 39, 199-203.	2.1	69
98	Different cell types in Neurospora crassa. Fungal Genetics Reports, 2003, 50, 17-19.	0.6	45
99	Characterization of a Novel, Defense-Related Arabidopsis Mutant, cir1, Isolated By Luciferase Imaging. Molecular Plant-Microbe Interactions, 2002, 15, 557-566.	2.6	49
100	Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 2002, 37, 109-119.	2.1	206
101	Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genetics and Biology, 2002, 37, 233-244.	2.1	69
102	Dynamic distribution of BIMGPP1 in living hyphae of Aspergillus indicates a novel role in septum formation. Molecular Microbiology, 2002, 45, 1219-1230.	2.5	28
103	Synergistic induction of wheat stem rust appressoria by chemical and topographical signals. Physiological and Molecular Plant Pathology, 2001, 58, 259-266.	2.5	32
104	Expression of Recombinant Aequorin as an Intracellular Calcium Reporter in the Phytopathogenic Fungus Phyllosticta ampelicida. Fungal Genetics and Biology, 2001, 34, 207-215.	2.1	12
105	The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Molecular Biology, 2001, 47, 641-652.	3.9	53
106	Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. Journal of Microscopy, 2000, 198, 246-259.	1.8	384
107	Apical Structure of Actively Growing Fern Rhizoids Examined by DIC and Confocal Microscopy. Annals of Botany, 2000, 85, 233-245.	2.9	10
108	Homothallism and heterothallism in Sordaria brevicollis. Mycological Research, 1998, 102, 1215-1223.	2.5	21

#	Article	IF	CITATIONS
109	Imaging Spitzenkörper, pH and calcium dynamics in growing fungal hyphae. , 1998, 54, 179-181.		9
110	Appressorium induction by topographical signals in six cereal rusts. Physiological and Molecular Plant Pathology, 1997, 51, 169-179.	2.5	26
111	Role of topography sensing for infection-structure differentiation in cereal rust fungi. Planta, 1997, 202, 163-170.	3.2	62
112	Ascus and ascospore morphogenesis. Mycological Research, 1996, 100, 1281-1314.	2.5	103
113	Calcium Channel Activity during Pollen Tube Growth and Reorientation Plant Cell, 1995, 7, 1173-1184.	6.6	172
114	Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta, 1994, 194, 471-477.	3.2	95
115	Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant Journal, 1994, 5, 331-341.	5.7	187
116	Calcium Waves and Dynamics Visualized by Confocal Microscopy in Xenopus Oocytes Expressing Cloned TRH Receptors. Journal of Neuroendocrinology, 1994, 6, 173-178.	2.6	21
117	Imaging calcium dynamics in living plant cells and tissues. Cell Biology International, 1993, 17, 111-126.	3.0	24
118	The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant Journal, 1993, 4, 163-177.	5.7	185
119	Confocal microscopy of living fungal hyphae microinjected with Ca2+-sensitive fluorescent dyes. Mycological Research, 1993, 97, 1505-1515.	2.5	37
120	Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature, 1992, 358, 753-755.	27.8	224
121	Examination of living fungal spores by scanning electron microscopy. Experimental Mycology, 1991, 15, 132-139.	1.6	12
122	Lowâ€ŧemperature scanning electron microscopy in biology. Journal of Microscopy, 1991, 161, 59-72.	1.8	74
123	Low-Temperature Scanning Electron Microscopy of Fungi and Fungus-Plant Interactions. , 1991, , 17-29.		26
124	Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell, 1991, 3, 333.	6.6	76
125	Ambient- and Low-Temperature Scanning Electron Microscopy. , 1991, , 313-413.		54
126	Water droplets and ice deposits in leaf intercellular spaces: redistribution of water during cryofixation for scanning electron microscopy. Planta, 1987, 172, 20-37.	3.2	52

ARTICLE IF CITATIONS

127 Hyphal Fusion., 0,, 260-273. 42