Cedric Asensio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488950/publications.pdf

Version: 2024-02-01

516710 642732 1,063 22 16 23 citations h-index g-index papers 31 31 31 1776 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pancreatic β-Cell–Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes, 2021, 70, 436-448.	0.6	10
2	Neurodegenerative <i>VPS41</i> variants inhibit HOPS function and mTORC1â€dependent TFEB/TFE3 regulation. EMBO Molecular Medicine, 2021, 13, e13258.	6.9	26
3	Mutations in <scp><i>HID1</i></scp> Cause Syndromic Infantile Encephalopathy and Hypopituitarism. Annals of Neurology, 2021, 90, 143-158.	5.3	3
4	Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Molecular Psychiatry, 2020, 25, 732-749.	7.9	71
5	EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Molecular Biology of the Cell, 2020, 31, 59-79.	2.1	14
6	Differential sorting behavior for soluble and transmembrane cargoes at the <i>trans</i> -Golgi network in endocrine cells. Molecular Biology of the Cell, 2020, 31, 157-166.	2.1	17
7	Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron, 2019, 102, 786-800.e5.	8.1	74
8	The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nature Communications, 2018, 9, 2069.	12.8	110
9	HID-1 controls formation of large dense core vesicles by influencing cargo sorting and <i>trans </i> -Golgi network acidification. Molecular Biology of the Cell, 2017, 28, 3870-3880.	2.1	30
10	Dissecting the Role of Synaptic Proteins with CRISPR. Research and Perspectives in Neurosciences, 2017, , 51-62.	0.4	0
11	Efficient, Complete Deletion of Synaptic Proteins using CRISPR. Neuron, 2014, 83, 1051-1057.	8.1	104
12	Self-Assembly of VPS41 Promotes Sorting Required for Biogenesis of the Regulated Secretory Pathway. Developmental Cell, 2013, 27, 425-437.	7.0	76
13	Widespread Dysregulation of Peptide Hormone Release in Mice Lacking Adaptor Protein AP-3. PLoS Genetics, 2013, 9, e1003812.	3.5	31
14	RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. Journal of Cell Biology, 2010, 191, 1173-1187.	5.2	62
15	Uncoupling protein-3 as a molecular determinant of the action of 3,5,3′-triiodothyronine on energy metabolism. Endocrine, 2009, 36, 246-254.	2.3	17
16	Effects of leptin on energy metabolism in \hat{l}^2 -less mice. International Journal of Obesity, 2008, 32, 936-942.	3.4	7
17	The control of UCP1 is dissociated from that of PGC- $1\hat{l}\pm$ or of mitochondriogenesis as revealed by a study using \hat{l}^2 -less mouse brown adipocytes in culture. FEBS Letters, 2006, 580, 4661-4666.	2.8	18
18	Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia, 2006, 49, 387-393.	6.3	94

#	Article	IF	CITATIONS
19	Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion. Diabetologia, 2005, 48, 624-633.	6.3	84
20	The Lack of Â-Adrenoceptors Results in Enhanced Insulin Sensitivity in Mice Exhibiting Increased Adiposity and Glucose Intolerance. Diabetes, 2005, 54, 3490-3495.	0.6	32
21	Changes in Glycemia by Leptin Administration or High- Fat Feeding in Rodent Models of Obesity/Type 2 Diabetes Suggest a Link between Resistin Expression and Control of Glucose Homeostasis. Endocrinology, 2004, 145, 2206-2213.	2.8	57
22	Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. International Journal of Obesity, 2004, 28, S45-S52.	3.4	104