JérÃ′me Aléon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348893/publications.pdf

Version: 2024-02-01

31 papers

2,976 citations

331670 21 h-index 434195 31 g-index

31 all docs

31 docs citations

times ranked

31

2242 citing authors

#	Article	IF	CITATIONS
1	Comet 81P/Wild 2 Under a Microscope. Science, 2006, 314, 1711-1716.	12.6	848
2	Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft. Science, 2006, 314, 1720-1724.	12.6	519
3	Isotopic Compositions of Cometary Matter Returned by Stardust. Science, 2006, 314, 1724-1728.	12.6	343
4	Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow. Science, 2010, 328, 742-745.	12.6	160
5	Calciumâ€aluminumâ€rich inclusions and amoeboid olivine aggregates from the CR carbonaceous chondrites. Meteoritics and Planetary Science, 2002, 37, 1729-1755.	1.6	107
6	A refractory inclusion returned by Stardust from comet 81P/Wild 2. Meteoritics and Planetary Science, 2008, 43, 1861-1877.	1.6	106
7	Oxygen Isotopes of Chondritic Components. Reviews in Mineralogy and Geochemistry, 2008, 68, 141-186.	4.8	102
8	Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases. Geochimica Et Cosmochimica Acta, 2001, 65, 4399-4412.	3.9	81
9	Evolution of Oxygen Isotopic Composition in the Inner Solar Nebula. Astrophysical Journal, 2005, 622, 1333-1342.	4.5	77
10	MULTIPLE ORIGINS OF NITROGEN ISOTOPIC ANOMALIES IN METEORITES AND COMETS. Astrophysical Journal, 2010, 722, 1342-1351.	4.5	75
11	Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochimica Et Cosmochimica Acta, 2003, 67, 3773-3783.	3.9	68
12	Graphitization at low temperatures (600–1200°C) in the presence of iron implications in planetology. Carbon, 2014, 66, 178-190.	10.3	57
13	Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets. Geochimica Et Cosmochimica Acta, 2009, 73, 4558-4575.	3.9	49
14	Oxygen isotope heterogeneities in the earliest protosolar gas recorded in a meteoritic calcium–aluminum-rich inclusion. Earth and Planetary Science Letters, 2007, 263, 114-127.	4.4	44
15	Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica Et Cosmochimica Acta, 2002, 66, 3351-3365.	3.9	43
16	Interstellar chemistry recorded by nitrogen isotopes in Solar System organic matter. Icarus, 2004, 167, 424-430.	2.5	41
17	THREE-DIMENSIONAL LAGRANGIAN TURBULENT DIFFUSION OF DUST GRAINS IN A PROTOPLANETARY DISK: METHOD AND FIRST APPLICATIONS. Astrophysical Journal, 2011, 737, 33.	4.5	38
18	Extreme oxygen isotope ratios in the early Solar System. Nature, 2005, 437, 385-388.	27.8	32

#	Article	lF	CITATIONS
19	Fine-grained, spinel-rich inclusions from the reduced CV chondrite Efremovka: II. Oxygen isotopic compositions. Meteoritics and Planetary Science, 2005, 40, 1043-1058.	1.6	27
20	Oxygen isotopes in the early protoplanetary disk inferred from pyroxene in a classical type B CAI. Earth and Planetary Science Letters, 2016, 440, 62-70.	4.4	23
21	Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite Allende. Geochimica Et Cosmochimica Acta, 2011, 75, 4752-4770.	3.9	22
22	First-principles modeling of chlorine isotope fractionation between chloride-bearing molecules and minerals. Chemical Geology, 2019, 525, 424-434.	3.3	21
23	On a Reliable Structural Characterization of Polished Carbons in Meteorites by Raman Microspectroscopy. Spectroscopy Letters, 2011, 44, 535-538.	1.0	19
24	Growth of calcium–aluminum-rich inclusions by coagulation and fragmentation in a turbulent protoplanetary disk: Observations and simulations. Icarus, 2015, 252, 440-453.	2.5	17
25	Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution. Earth and Planetary Science Letters, 2018, 482, 324-333.	4.4	15
26	O, Mg, and Si isotope distributions in the complex ultrarefractory CAI Efremovka 101.1: Assimilation of ultrarefractory, FUN, and regular CAI precursors. Geochimica Et Cosmochimica Acta, 2018, 232, 48-81.	3.9	13
27	NanoSIMS Imaging of D/H Ratios on FIB Sections. Analytical Chemistry, 2019, 91, 13763-13771.	6. 5	9
28	Impact delivery of organic matter on the acapulcoite–lodranite parent-body deduced from C, N isotopes and nanostructures of carbon phases in Acapulco and Lodran. Geochimica Et Cosmochimica Acta, 2014, 142, 224-239.	3.9	7
29	Alkali magmatism on a carbonaceous chondrite planetesimal. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8353-8359.	7.1	6
30	Determination of the initial hydrogen isotopic composition of the solar system. Nature Astronomy, 2022, 6, 458-463.	10.1	5
31	Meteorites and the physico-chemical conditions in the early solar nebula. EAS Publications Series, 2010, 41, 253-300.	0.3	2