Oliver Hartley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. Science Advances, 2021, 7, .	10.3	36
2	Precision-engineered Peptide and Protein Analogs: Establishing a New Discovery Platform for Potent GPCR Modulators. Chimia, 2021, 75, 489-494.	0.6	2
3	Evaluation of the Safety, Acceptability, and Pharmacokinetic Profile of a Gel Formulation of OB-002 in Healthy Volunteers. AIDS Research and Human Retroviruses, 2021, 37, 453-460.	1.1	4
4	SARSâ€CoVâ€2 infection as a trigger of humoral response against apolipoprotein Aâ€1. European Journal of Clinical Investigation, 2021, 51, e13661.	3.4	10
5	Arrestin Recruitment to C-C Chemokine Receptor 5: Potent C-C Chemokine Ligand 5 Analogs Reveal Differences in Dependence on Receptor Phosphorylation and Isoform-Specific Recruitment Bias. Molecular Pharmacology, 2020, 98, 599-611.	2.3	7
6	Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Science Translational Medicine, 2019, 11, .	12.4	45
7	High-Affinity Binding of Chemokine Analogs that Display Ligand Bias at the HIV-1 Coreceptor CCR5. Biophysical Journal, 2019, 117, 903-919.	0.5	13
8	Development and pharmacokinetics of a combination vaginal ring for sustained release of dapivirine and the protein microbicide 5P12-RANTES. International Journal of Pharmaceutics, 2019, 564, 207-213.	5.2	8
9	Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 inhibitor 5P12-RANTES. Journal of Controlled Release, 2019, 298, 1-11.	9.9	34
10	IFN- \hat{I}^3 is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight, 2019, 4, .	5.0	13
11	Rapid and low-cost multiplex synthesis of chemokine analogs. Journal of Biological Chemistry, 2018, 293, 19092-19100.	3.4	3
12	CCR5: Established paradigms and new frontiers for a †̃celebrity' chemokine receptor. Cytokine, 2018, 109, 81-93.	3.2	19
13	Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives. Swiss Medical Weekly, 2018, 148, w14580.	1.6	6
14	Stability of 5P12-RANTES, A Candidate Rectal Microbicide, in Human Rectal Lavage. AIDS Research and Human Retroviruses, 2017, 33, 768-777.	1.1	11
15	Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments. Protein Engineering, Design and Selection, 2017, 30, 575-582.	2.1	5
16	Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	11
17	Impact of CD14 Polymorphisms on Anti-Apolipoprotein A-1 IgG-Related Coronary Artery Disease Prediction in the General Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2342-2349.	2.4	27
18	Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Scientific Reports, 2017, 7, 4956.	3.3	6

OLIVER HARTLEY

#	Article	IF	CITATIONS
19	Anti-Apolipoprotein A-1 IgG Predict All-Cause Mortality and Are Associated with Fc Receptor-Like 3 Polymorphisms. Frontiers in Immunology, 2017, 8, 437.	4.8	30
20	Generating Chemokine Analogs with Enhanced Pharmacological Properties Using Phage Display. Methods in Enzymology, 2016, 570, 47-72.	1.0	6
21	Recombinant Antibodies for Academia: A Practical Approach. Chimia, 2016, 70, 893.	0.6	11
22	Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants. Molecular Therapy, 2016, 24, 1675-1685.	8.2	29
23	A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris. Protein Expression and Purification, 2016, 119, 1-10.	1.3	19
24	Potent Anti-HIV Chemokine Analogs Direct Post-Endocytic Sorting of CCR5. PLoS ONE, 2015, 10, e0125396.	2.5	19
25	The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease?. PLoS ONE, 2015, 10, e0132780.	2.5	26
26	CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells. Journal of Leukocyte Biology, 2015, 98, 59-71.	3.3	24
27	Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry. Journal of Biological Chemistry, 2014, 289, 19042-19052.	3.4	34
28	δ-Conotoxins Synthesized Using an Acid-cleavable Solubility Tag Approach Reveal Key Structural Determinants for NaV Subtype Selectivity. Journal of Biological Chemistry, 2014, 289, 35341-35350.	3.4	16
29	Definition of Human Apolipoprotein A-I Epitopes Recognized by Autoantibodies Present in Patients with Cardiovascular Diseases. Journal of Biological Chemistry, 2014, 289, 28249-28259.	3.4	26
30	Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues. Histochemistry and Cell Biology, 2014, 142, 69-77.	1.7	24
31	Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES. Biophysical Journal, 2013, 105, 2586-2597.	0.5	15
32	Quantitative morphological analysis of arrestin2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. Journal of Structural Biology, 2013, 184, 329-334.	2.8	27
33	HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proceedings of the United States of America, 2013, 110, 9475-9480.	7.1	61
34	Resistance to the CCR5 Inhibitor 5P12-RANTES Requires a Difficult Evolution from CCR5 to CXCR4 Coreceptor Use. PLoS ONE, 2011, 6, e22020.	2.5	39
35	Response: absence of CCR5 intracellular pools in most CD4 and CD8 T cells. Blood, 2011, 118, 1179-1179.	1.4	1
36	CC Chemokine Receptor 5 (CCR5) Desensitization. Journal of Biological Chemistry, 2010, 285, 41772-41780.	3.4	58

OLIVER HARTLEY

#	Article	IF	CITATIONS
37	An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. Journal of Leukocyte Biology, 2009, 86, 903-911.	3.3	67
38	Topically Applied Recombinant Chemokine Analogues Fully Protect Macaques from Vaginal Simianâ€Human Immunodeficiency Virus Challenge. Journal of Infectious Diseases, 2009, 199, 1525-1527.	4.0	68
39	Engineered CCR5 superagonist chemokine as adjuvant in anti-tumor DNA vaccination. Vaccine, 2008, 26, 3252-3260.	3.8	16
40	Targeting Chemokine Receptors in HIV: A Status Report. Annual Review of Pharmacology and Toxicology, 2008, 48, 425-461.	9.4	65
41	Highly potent, fully recombinant anti-HIV chemokines: Reengineering a low-cost microbicide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17706-17711.	7.1	133
42	Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1Â/CCL4. Protein Engineering, Design and Selection, 2008, 21, 65-72.	2.1	23
43	Chemokine Analogues Show Suitable Stability for Development as Microbicides. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 472-476.	2.1	31
44	Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nature Reviews Immunology, 2006, 6, 371-382.	22.7	184
45	Engineering Chemokines to Develop Optimized HIV Inhibitors. Current Protein and Peptide Science, 2005, 6, 207-219.	1.4	33
46	Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Research Reviews, 2005, 48, 16-42.	9.0	455
47	Medicinal chemistry applied to a synthetic protein: Development of highly potent HIV entry inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16460-16465.	7.1	151
48	Prevention of Vaginal SHIV Transmission in Rhesus Macaques Through Inhibition of CCR5. Science, 2004, 306, 485-487.	12.6	364
49	Human Immunodeficiency Virus Type 1 Entry Inhibitors Selected on Living Cells from a Library of Phage Chemokines. Journal of Virology, 2003, 77, 6637-6644.	3.4	49
50	THE USE OF PHAGE DISPLAY IN THE STUDY OF RECEPTORS AND THEIR LIGANDS. Journal of Receptor and Signal Transduction Research, 2002, 22, 373-392.	2.5	18