Dariusz Dziga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488697/publications.pdf

Version: 2024-02-01

516710 552781 29 724 16 26 h-index citations g-index papers 31 31 31 817 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cyanophage infections reduce photosynthetic activity and expression of CO2 fixation genes in the freshwater bloom-forming cyanobacterium Aphanizomenon flos-aquae. Harmful Algae, 2022, 116, 102215.	4.8	10
2	Microcystinase $\hat{a} \in \hat{a}$ a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. Water Research, 2021, 189, 116646.	11.3	18
3	Arabidopsis Phototropins Participate in the Regulation of Dark-Induced Leaf Senescence. International Journal of Molecular Sciences, 2021, 22, 1836.	4.1	4
4	Occurrence of a single-species cyanobacterial bloom in a lake in Cyprus: monitoring and treatment with hydrogen peroxide-releasing granules. Environmental Sciences Europe, 2021, 33, .	5.5	9
5	Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?. Genes, 2021, 12, 855.	2.4	3
6	Different Gene Expression Response of Polish and Australian Raphidiopsis raciborskii Strains to the Chill/Light Stress. Applied Sciences (Switzerland), 2020, 10, 5437.	2.5	11
7	The Dark Side of UV-Induced DNA Lesion Repair. Genes, 2020, 11, 1450.	2.4	13
8	All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes, 2020, 11, 1304.	2.4	24
9	Correlation between specific groups of heterotrophic bacteria and microcystin biodegradation in freshwater bodies of central Europe. FEMS Microbiology Ecology, 2019, 95, .	2.7	18
10	The Effect of a Combined Hydrogen Peroxide-MlrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake LudoÅ _I . Toxins, 2019, 11, 725.	3.4	15
11	Heterologous expression of mlrA in a photoautotrophic host – Engineering cyanobacteria to degrade microcystins. Environmental Pollution, 2018, 237, 926-935.	7.5	28
12	Combined treatment of toxic cyanobacteria <i>Microcystis aeruginosa</i> with hydrogen peroxide and microcystin biodegradation agents results in quick toxins elimination. Acta Biochimica Polonica, 2018, 65, 133-140.	0.5	14
13	The biodegradation of microcystins in temperate freshwater bodies with previous cyanobacterial history. Ecotoxicology and Environmental Safety, 2017, 145, 420-430.	6.0	41
14	Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from RusaÅ,ka Lake. Toxins, 2016, 8, 55.	3.4	24
15	Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins. Toxins, 2016, 8, 76.	3.4	36
16	Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides. Acta Biochimica Polonica, 2015, 62, 395-400.	0.5	5
17	Bioreactor Study Employing Bacteria with Enhanced Activity toward Cyanobacterial Toxins Microcystins. Toxins, 2014, 6, 2379-2392.	3.4	27
18	Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon, 2014, 80, 38-46.	1.6	27

#	Article	IF	Citations
19	Microbial Degradation of Microcystins. Chemical Research in Toxicology, 2013, 26, 841-852.	3.3	114
20	Genetically Engineered Bacteria Immobilized in Alginate as an Option of Cyanotoxins Removal. International Journal of Environmental Science and Development, 2013, , 360-364.	0.6	9
21	Verification of the Role of MlrC in Microcystin Biodegradation by Studies Using a Heterologously Expressed Enzyme. Chemical Research in Toxicology, 2012, 25, 1192-1194.	3.3	32
22	Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon, 2012, 59, 171-181.	1.6	40
23	Heterologous expression and characterisation of microcystinase. Toxicon, 2012, 59, 578-586.	1.6	51
24	EXTRACELLULAR ENZYMES OF THE <i>MICROCYSTIS AERUGINOSA</i> PCC 7813 STRAIN ARE INHIBITED IN THE PRESENCE OF HYDROQUINONE AND PYROGALLOL, ALLELOCHEMICALS PRODUCED BY AQUATIC PLANTS PLANTS 1 Journal of Phycology, 2009, 45, 1299-1303.	2.3	4
25	First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 2009, 74, 669-675.	8.2	66
26	Fruit Yield of Tomato Cultivated on Media with Bicarbonate and Nitrate/Ammonium as the Nitrogen Source. Journal of Plant Nutrition, 2007, 30, 149-161.	1.9	6
27	The alteration of <i>Microcystis aeruginosa</i> biomass and dissolved microcystin‣R concentration following exposure to plantâ€producing phenols. Environmental Toxicology, 2007, 22, 341-346.	4.0	43
28	Carbohydrate and free amino acid contents in tomato plants grown in media with bicarbonate and nitrate or ammonium. Acta Physiologiae Plantarum, 2005, 27, 523-529.	2.1	24
29	Biochemical and Morphological Alterations in Rat Liver Golgi Complexes After Treatment with Bis(maltolato)oxovanadium(IV) [BMOV] orMaltol Alone. Pathology Research and Practice, 2000, 196, 561-568.	2.3	4