Christian Fettkenhauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatially resolved investigation of the defect states in methylammonium lead iodide perovskite bicrystals. Journal of Materials Chemistry C, 2019, 7, 13156-13160.	5.5	2
2	Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications. MRS Advances, 2018, 3, 1819-1823.	0.9	18
3	Agglomeration-Free Preparation of Modified Silica Nanoparticles for Emulsion Polymerization—A Well Scalable Process. Langmuir, 2018, 34, 376-383.	3.5	20
4	Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Letters, 2018, 3, 1781-1786.	17.4	182
5	Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers. Advanced Energy Materials, 2017, 7, 1700600.	19.5	163
6	Solar Cells: Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	19.5	3
7	1,2,4-Triazole-Based Approach to Noble-Metal-Free Visible-Light Driven Water Splitting over Carbon Nitrides. Chemistry of Materials, 2016, 28, 772-778.	6.7	48
8	Triazoles: A New Class of Precursors for the Synthesis of Negatively Charged Carbon Nitride Derivatives. Chemistry of Materials, 2015, 27, 5170-5179.	6.7	198
9	Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl ₂ eutectics. Journal of Materials Chemistry A, 2015, 3, 21227-21232.	10.3	36
10	A solution-based approach to composite dielectric films of surface functionalized CaCu ₃ Ti ₄ O ₁₂ and P(VDF-HFP). Journal of Materials Chemistry A, 2014, 2, 2266-2274.	10.3	30
11	<i>In Situ</i> Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble Metal Free Photocatalysis. Chemistry of Materials, 2014, 26, 5812-5818.	6.7	192
12	Novel carbon nitride composites with improved visible light absorption synthesized in ZnCl ₂ -based salt melts. RSC Advances, 2014, 4, 40803-40811.	3.6	38
13	Enhanced dielectric properties of sol–gel-BaTiO ₃ /P(VDF-HFP) composite films without surface functionalization. RSC Advances, 2014, 4, 40321-40329.	3.6	21
14	BaTiO3–P(VDF-HFP) nanocomposite dielectrics—Influence of surface modification and dispersion additives. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 881-888.	3.5	29
15	Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013, 135, 7118-7121.	13.7	781