James A H Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3488153/publications.pdf Version: 2024-02-01

IAMES A H MUDDAY

#	Article	IF	CITATIONS
1	Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne Biosynthetic Gene Cluster Diversity. MBio, 2021, 12, e0071521.	4.1	16
2	Segmentation of Meristem Cells by an Automated Optimization Algorithm. Applied Sciences (Switzerland), 2020, 10, 8523.	2.5	0
3	Bioluminescent detection of isothermal DNA amplification in microfluidic generated droplets and artificial cells. Scientific Reports, 2020, 10, 21886.	3.3	14
4	Genomic Assemblies of Members of <i>Burkholderia</i> and Related Genera as a Resource for Natural Product Discovery. Microbiology Resource Announcements, 2020, 9, .	0.6	9
5	Full Dynamic Range Quantification using Loop-mediated Amplification (LAMP) by Combining Analysis of Amplification Timing and Variance between Replicates at Low Copy Number. Scientific Reports, 2020, 10, 916.	3.3	18
6	Lack of specificity associated with using molecular beacons in loop mediated amplification assays. BMC Biotechnology, 2019, 19, 55.	3.3	19
7	Double or Nothing? Cell Division and Cell Size Control. Trends in Plant Science, 2019, 24, 1083-1093.	8.8	19
8	Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification using Quenched Fluorescent Primers. Scientific Reports, 2019, 9, 7400.	3.3	113
9	Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nature Microbiology, 2019, 4, 996-1005.	13.3	106
10	Lineage and stage-specific expressed <i>CYCD7;1</i> coordinates the single symmetric division that creates stomatal guard cells. Development (Cambridge), 2018, 145, .	2.5	53
11	Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network. Development (Cambridge), 2018, 145, .	2.5	41
12	ΔFlucs: Brighter <i>Photinus pyralis</i> firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant. Biotechnology and Bioengineering, 2018, 115, 50-59.	3.3	6
13	Optimised LAMP allows single copy detection of 35Sp and NOSt in transgenic maize using Bioluminescent Assay in Real Time (BART). Scientific Reports, 2018, 8, 17590.	3.3	33
14	Convergent synthesis and optical properties of near-infrared emitting bioluminescent infra-luciferins. RSC Advances, 2017, 7, 3975-3982.	3.6	23
15	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	4.8	11
16	Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genetics, 2017, 13, e1006988.	3.5	29
17	Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nature Communications, 2017, 8, 15060.	12.8	133
18	Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Scientific Reports, 2016, 6, 23586.	3.3	14

#	Article	IF	CITATIONS
19	Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture. Plant Signaling and Behavior, 2016, 11, e1192741.	2.4	6
20	Activation of <i><scp>CYCD</scp>7;1</i> in the central cell and early endosperm overcomes cell ycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. Plant Journal, 2015, 84, 41-55.	5.7	21
21	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
22	DEFECTIVE KERNEL 1 promotes and maintains plant epidermal differentiation. Development (Cambridge), 2015, 142, 1978-1983.	2.5	36
23	AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. Journal of Experimental Botany, 2015, 66, 3991-4000.	4.8	29
24	<i>AINTEGUMENTA</i> and the D-type cyclin <i>CYCD3;1</i> regulate root secondary growth and respond to cytokinins. Biology Open, 2015, 4, 1229-1236.	1.2	89
25	The plant cell cycle in context. Journal of Experimental Botany, 2014, 65, 2557-2562.	4.8	63
26	STM sustains stem cell function in the <i>Arabidopsis</i> shoot apical meristem and controls <i>KNOX</i> gene expression independently of the transcriptional repressor AS1. Plant Signaling and Behavior, 2014, 9, e28934.	2.4	40
27	WOX5 Suppresses CYCLIN D Activity to Establish Quiescence at the Center of the Root Stem Cell Niche. Current Biology, 2014, 24, 1939-1944.	3.9	197
28	Glutathione Transport: A New Role for PfCRT in Chloroquine Resistance. Antioxidants and Redox Signaling, 2013, 19, 683-695.	5.4	50
29	The <scp>A</scp> rabidopsis homeobox gene <i><scp>SHOOT MERISTEMLESS</scp></i> has cellular and meristemâ€organisational roles with differential requirements for cytokinin and <scp>CYCD3</scp> activity. Plant Journal, 2013, 75, 53-66.	5.7	77
30	The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication. Journal of Experimental Botany, 2013, 64, 1-13.	4.8	39
31	D-type cyclins control cell division and developmental rate during Arabidopsis seed development. Journal of Experimental Botany, 2012, 63, 3571-3586.	4.8	56
32	To Divide and to Rule; Regulating Cell Division in Roots During Post-embryonic Growth. Progress in Botany Fortschritte Der Botanik, 2012, , 57-80.	0.3	5
33	Systems Analysis of Shoot Apical Meristem Growth and Development: Integrating Hormonal and Mechanical Signaling. Plant Cell, 2012, 24, 3907-3919.	6.6	109
34	A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division. Cell, 2012, 150, 1002-1015.	28.9	273
35	GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnology, 2012, 12, 15.	3.3	113
36	Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids. Plant Methods, 2012, 8, 43.	4.3	8

#	Article	IF	CITATIONS
37	The <i>Arabidopsis</i> D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2 Modulate Auxin-Induced Lateral Root Formation. Plant Cell, 2011, 23, 641-660.	6.6	111
38	Arabidopsis Thaliana Automatic Cell File Detection and Cell Length Estimation. Lecture Notes in Computer Science, 2011, , 1-11.	1.3	5
39	Plant homologs of the <i>Plasmodium falciparum</i> chloroquine-resistance transporter, <i>Pf</i> CRT, are required for glutathione homeostasis and stress responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2331-2336.	7.1	164
40	Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature, 2010, 466, 128-132.	27.8	385
41	Arabidopsis thaliana Chromosome 4 Replicates in Two Phases That Correlate with Chromatin State. PLoS Genetics, 2010, 6, e1000982.	3.5	65
42	Regulation of Cell Proliferation in the Stomatal Lineage by the <i>Arabidopsis</i> MYB FOUR LIPS via Direct Targeting of Core Cell Cycle Genes. Plant Cell, 2010, 22, 2306-2321.	6.6	152
43	Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time. PLoS ONE, 2010, 5, e14155.	2.5	73
44	MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis. PLoS ONE, 2010, 5, e15357.	2.5	84
45	Regulatory processes underscoring the light control of shoot meristem activity and leaf initiation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S205.	1.8	0
46	Dissecting regulatory pathways of G1/S control in Arabidopsis: common and distinct targets of CYCD3;1, E2Fa and E2Fc. Plant Molecular Biology, 2009, 71, 345-365.	3.9	50
47	The D-type cyclin CYCD4;1 modulates lateral root density in <i>Arabidopsis</i> by affecting the basal meristem region. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22528-22533.	7.1	73
48	Control of division and differentiation of plant stem cells and their derivatives. Seminars in Cell and Developmental Biology, 2009, 20, 1134-1142.	5.0	27
49	The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth. PLoS ONE, 2009, 4, e6648.	2.5	124
50	Comprehensive gene expression atlas for the <i>Arabidopsis</i> MAP kinase signalling pathways. New Phytologist, 2008, 179, 643-662.	7.3	105
51	Degradation of the cyclinâ€dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant Journal, 2008, 53, 705-716.	5.7	97
52	Distinct Light-Initiated Gene Expression and Cell Cycle Programs in the Shoot Apex and Cotyledons of <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 947-968.	6.6	113
53	Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis. Molecular Plant, 2008, 1, 321-337.	8.3	308
54	A model for Arabidopsis class-1 KNOX gene function. Plant Signaling and Behavior, 2008, 3, 257-259.	2.4	29

#	Article	IF	CITATIONS
55	BART: SMART BIOCHEMISTRY, BRIGHT BIOLUMINESCENCE, LOW-COST HARDWARE. , 2008, , .		0
56	BART APPLICATIONS IN MEDICAL AND FOOD DIAGNOSTICS. , 2008, , .		0
57	Plant D-type cyclins: structure, roles and functions. SEB Experimental Biology Series, 2008, 59, 1-28.	0.1	2
58	Genomic Organization and Evolutionary Conservation of Plant D-Type Cyclins. Plant Physiology, 2007, 145, 1558-1576.	4.8	52
59	<i>Arabidopsis</i> CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14537-14542.	7.1	333
60	Enhanced Transformation of TNT by Tobacco Plants Expressing a Bacterial Nitroreductase. International Journal of Phytoremediation, 2007, 9, 385-401.	3.1	52
61	The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant Journal, 2007, 50, 767-781.	5.7	107
62	A novel family of thiol transporters from plants. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, S266.	1.8	0
63	Synchronization, Transformation, and Cryopreservation of Suspension-Cultured Cells. , 2006, 323, 45-62.		24
64	KNOX Gene Function in Plant Stem Cell Niches. Plant Molecular Biology, 2006, 60, 929-946.	3.9	179
65	Cell Cycle Regulated D3-type Cyclins form Active Complexes with Plant-specific B-type Cyclin-dependent Kinase in vitro. Plant Molecular Biology, 2006, 61, 311-327.	3.9	18
66	The Evolving Concept of the Meristem. Plant Molecular Biology, 2006, 60, V-VII.	3.9	9
67	A greenprint for growth: signalling the pattern of proliferation. Current Opinion in Plant Biology, 2006, 9, 490-495.	7.1	9
68	The D-Type Cyclin CYCD3;1 Is Limiting for the G1-to-S-Phase Transition in Arabidopsis. Plant Cell, 2006, 18, 893-906.	6.6	196
69	Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance. Biochemical Journal, 2006, 397, 305-312.	3.7	68
70	Proteomic Analysis of CDK yclin Complexes. FASEB Journal, 2006, 20, .	0.5	0
71	BART-NAAT — A NOVEL BIOLUMINESCENT ASSAY FOR REAL-TIME NUCLEIC ACID AMPLIFICATION. , 2005, , . 		0
72	Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant Journal, 2005, 41, 546-566.	5.7	430

#	Article	IF	CITATIONS
73	Transcriptional activation of tobacco E2F is repressed by co-transfection with the retinoblastoma-related protein: cyclin D expression overcomes this repressor activity. Plant Molecular Biology, 2005, 57, 83-100.	3.9	50
74	D-type cyclins activate division in the root apex to promote seed germination in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15694-15699.	7.1	152
75	The developmental context of cell-cycle control in plants. Seminars in Cell and Developmental Biology, 2005, 16, 385-396.	5.0	77
76	A SINGLE–STEP BIOLUMINESCENT ENDPOINT ASSAY FOR NUCLEIC ACID AMPLIFICATION TECHNOLOGIES. , 2005, , .		0
77	BIOLUMINESCENT DETECTION OF RNA HYDROLYSIS PROBES IN DNA TESTING. , 2005, , .		0
78	Ectopic expression of Arabidopsis CYCD2 and CYCD3 in tobacco has distinct effects on the structural organization of the shoot apical meristem. Journal of Experimental Botany, 2004, 56, 123-34.	4.8	29
79	Differential stability ofArabidopsisD-type cyclins: CYCD3;1 is a highly unstable protein degraded by a proteasome-dependent mechanism. Plant Journal, 2004, 38, 616-625.	5.7	65
80	Cryopreservation of transformed and wild-typeArabidopsisand tobacco cell suspension cultures. Plant Journal, 2004, 37, 635-644.	5.7	47
81	Genome-wide gene expression in an Arabidopsis cell suspension. Plant Molecular Biology, 2003, 53, 423-442.	3.9	224
82	Arabidopsis transcript profiling on Affymetrix GeneChip arrays. Plant Molecular Biology, 2003, 53, 457-465.	3.9	55
83	The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant Journal, 2003, 36, 918-930.	5.7	115
84	Altered Cell Cycle Distribution, Hyperplasia, and Inhibited Differentiation in Arabidopsis Caused by the D-Type Cyclin CYCD3. Plant Cell, 2003, 15, 79-92.	6.6	412
85	THEPLANTCELLCYCLE. Annual Review of Plant Biology, 2003, 54, 235-264.	18.7	430
86	Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). Journal of Experimental Botany, 2003, 54, 303-308.	4.8	23
87	The AtRbx1 Protein Is Part of Plant SCF Complexes, and Its Down-regulation Causes Severe Growth and Developmental Defects. Journal of Biological Chemistry, 2002, 277, 50069-50080.	3.4	59
88	RSC2 , Encoding a Component of the RSC Nucleosome Remodeling Complex, Is Essential for 2μm Plasmid Maintenance in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2002, 22, 4218-4229.	2.3	62
89	Plant D–type cyclins and the control of G1 progression. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 749-760.	4.0	111
90	Cell Cycle-regulated Gene Expression inArabidopsis. Journal of Biological Chemistry, 2002, 277, 41987-42002.	3.4	222

#	Article	IF	CITATIONS
91	DNA PLASMID TRANSMISSION IN YEAST IS ASSOCIATED WITH SPECIFIC SUB-NUCLEAR LOCALISATION DURING CELL DIVISION. Cell Biology International, 2002, 26, 393-405.	3.0	24
92	SynchronousArabidopsissuspension cultures for analysis of cell-cycle gene activity. Plant Journal, 2002, 30, 203-212.	5.7	314
93	Development of a thermostable firefly luciferase. Analytica Chimica Acta, 2002, 457, 115-123.	5.4	62
94	Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnology, 2001, 19, 1168-1172.	17.5	220
95	A novel and highly divergent Arabidopsis cyclin isolated by complementation in budding yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1539, 1-6.	4.1	14
96	Arabidopsis E2F1 binds a sequence present in the promoter of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Molecular Biology, 2001, 47, 555-568.	3.9	98
97	Cell cycle controls and the development of plant form. Current Opinion in Plant Biology, 2001, 4, 44-49.	7.1	121
98	Cell Cycle Regulation of Cyclin-Dependent Kinases in Tobacco Cultivar Bright Yellow-2 Cells. Plant Physiology, 2001, 126, 1214-1223.	4.8	114
99	The Arabidopsis D-type Cyclins CycD2 and CycD3 Both Interact in Vivo with the PSTAIRE Cyclin-dependent Kinase Cdc2a but Are Differentially Controlled. Journal of Biological Chemistry, 2001, 276, 7041-7047.	3.4	100
100	Synthesis of 6-Hydroxybenzothiazole-2-carboxylic Acid. Synthesis, 2001, 2001, 1780-1783.	2.3	10
101	Mosaic analysis ofGL2 gene expression and cell layer autonomy during the specification ofArabidopsis leaf trichomes. Genesis, 2000, 28, 68-74.	1.6	13
102	Control of plant growth and development through manipulation of cell-cycle genes. Current Opinion in Biotechnology, 2000, 11, 138-145.	6.6	28
103	Cyclin D control of growth rate in plants. Nature, 2000, 405, 575-579.	27.8	317
104	Triggering the cell cycle in plants. Trends in Cell Biology, 2000, 10, 245-250.	7.9	139
105	The role and regulation of D-type cyclins in the plant cell cycle. , 2000, 43, 621-633.		83
106	Controlled induction of GUS marked clonal sectors in Arabidopsis. Journal of Experimental Botany, 2000, 51, 853-863.	4.8	2
107	Controlled induction of GUS marked clonal sectors in Arabidopsis. Journal of Experimental Botany, 2000, 51, 853-863.	4.8	22
108	The Expression of D-Cyclin Genes Defines Distinct Developmental Zones in Snapdragon Apical Meristems and Is Locally Regulated by the Cycloidea Gene. Plant Physiology, 2000, 122, 1137-1148.	4.8	185

#	Article	IF	CITATIONS
109	Sugar Control of the Plant Cell Cycle: Differential Regulation of Arabidopsis D-Type Cyclin Gene Expression. Molecular and Cellular Biology, 2000, 20, 4513-4521.	2.3	387
110	The role and regulation of D-type cyclins in the plant cell cycle. , 2000, , 77-89.		2
111	Somatic and germinal inheritance of an FLP-mediated deletion in transgenic tobacco. Journal of Experimental Botany, 1999, 50, 1447-1456.	4.8	29
112	Distinct Cyclin D Genes Show Mitotic Accumulation or Constant Levels of Transcripts in Tobacco Bright Yellow-2 Cells1. Plant Physiology, 1999, 119, 343-352.	4.8	126
113	Retinoblastoma proteins in plants. , 1999, 41, 295-299.		54
114	DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Current Biology, 1999, 9, 963-S1.	3.9	113
115	The plant cell cycle. Current Opinion in Plant Biology, 1999, 2, 440-446.	7.1	77
116	Cytokinin Activation of Arabidopsis Cell Division Through a D-Type Cyclin. Science, 1999, 283, 1541-1544.	12.6	731
117	Somatic and germinal inheritance of an FLP-mediated deletion in transgenic tobacco. Journal of Experimental Botany, 1999, 50, 1447-1456.	4.8	7
118	The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Molecular Biology, 1998, 37, 155-169.	3.9	147
119	Multiple Genes Encoding the Conserved CCAAT-Box Transcription Factor Complex Are Expressed in Arabidopsis. Plant Physiology, 1998, 117, 1015-1022.	4.8	150
120	The retinoblastoma protein is in plants!. Trends in Plant Science, 1997, 2, 82-84.	8.8	12
121	An Escherichia coli system for assay of Flp site-specific recombination on substrate plasmids. Gene, 1996, 180, 225-227.	2.2	8
122	Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. Biochemical Journal, 1996, 319, 343-350.	3.7	113
123	Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Molecular Biology, 1996, 32, 1003-1018.	3.9	232
124	Modulation of Cyclin Transcript Levels in Cultured Cells of Arabidopsis thaliana. Plant Physiology, 1996, 112, 1023-1033.	4.8	120
125	FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant Journal, 1995, 8, 637-652.	5.7	103
126	A Family of Cyclin D Homologs from Plants Differentially Controlled by Growth Regulators and Containing the Conserved Retinoblastoma Protein Interaction Motif. Plant Cell, 1995, 7, 85.	6.6	1

#	Article	IF	CITATIONS
127	A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif Plant Cell, 1995, 7, 85-103.	6.6	372
128	Multiple cloning sites carrying loxP and FRT recognition sites for the Cre and Flp site-specific recombinases. Gene, 1995, 166, 173-174.	2.2	18
129	Plant cell division: the beginning of START. Plant Molecular Biology, 1994, 26, 1-3.	3.9	22
130	Isolation of Intact DNA and RNA from Plant Tissues. Analytical Biochemistry, 1994, 218, 474-476.	2.4	63
131	Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Current Genetics, 1993, 24, 455-459.	1.7	136
132	Site-specific recombinases: tools for genome engineering. Trends in Genetics, 1993, 9, 413-421.	6.7	344
133	A rapid and inexpensive method for isolation of shuttle vector DNA from yeast for the transformation ofE.coli. Nucleic Acids Research, 1992, 20, 5852-5852.	14.5	10
134	Unexpected divergence and molecular coevolution in yeast plasmids. Journal of Molecular Biology, 1988, 200, 601-607.	4.2	33
135	Plasmid Vectors Carrying the Replication Origin of Filamentous Single-Stranded Phages. , 1987, , 135-154.		87
136	Micro Review Bending the rules: the 2? plasmid of yeast. Molecular Microbiology, 1987, 1, 1-4.	2.5	31
137	Functional analysis of the yeast plasmid partition locus <i>STB</i> . EMBO Journal, 1986, 5, 3391-3399.	7.8	73
138	HCC ligation: rapid and specific DNA construction with blunt ended DNA fragments. Nucleic Acids Research, 1986, 14, 10118-10118.	14.5	12
139	The Plant Cyclins. , 0, , 31-61.		12