Yuguo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487708/publications.pdf

Version: 2024-02-01

		8755	8866
323	25,974	75	145
papers	citations	h-index	g-index
341	341	341	18670
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extended short-range airborne transmission of respiratory infections. Journal of Hazardous Materials, 2022, 422, 126837.	12.4	25
2	Aerosol transmission of SARS-CoV-2 due to the chimney effect in two high-rise housing drainage stacks. Journal of Hazardous Materials, 2022, 421, 126799.	12.4	35
3	Poor ventilation worsens shortâ€range airborne transmission of respiratory infection. Indoor Air, 2022, 32, .	4.3	47
4	Insufficient ventilation led to a probable long-range airborne transmission of SARS-CoV-2 on two buses. Building and Environment, 2022, 207, 108414.	6.9	69
5	Influence of network structure on contaminant spreading efficiency. Journal of Hazardous Materials, 2022, 424, 127511.	12.4	3
6	How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental Research, 2022, 205, 112451.	7.5	17
7	The effect of background wind on summertime daily maximum air temperature in Kowloon, Hong Kong. Building and Environment, 2022, 210, 108693.	6.9	11
8	Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. Journal of Hazardous Materials, 2022, 425, 128051.	12.4	30
9	Hypothesis: All respiratory viruses (including SARSâ€CoVâ€2) are aerosolâ€transmitted. Indoor Air, 2022, 32, e12937.	4.3	12
10	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environmental Science & Environmental Science & 2022, 56, 1125-1137.	10.0	109
11	The role of SARS-CoV-2 aerosol transmission during the COVID-19 pandemic. Interface Focus, 2022, 12, .	3.0	2
12	High attack rate in a Tong Lau house outbreak of COVID-19 with subdivided units in Hong Kong. Interface Focus, 2022, 12, 20210063.	3.0	12
13	Spread of SARS-CoV-2 aerosols via two connected drainage stacks in a high-rise housing outbreak of COVID-19. Journal of Hazardous Materials, 2022, 430, 128475.	12.4	18
14	An exploration of the political, social, economic and cultural factors affecting how different global regions initially reacted to the COVID-19 pandemic. Interface Focus, 2022, 12, 20210079.	3.0	37
15	Modelling the thermal microenvironment of footwear subjected to forced ventilation. Ergonomics, 2022, , 1-18.	2.1	1
16	Outbreak investigation of airborne transmission of Omicron (B.1.1.529) - SARS-CoV-2 variant of concern in a restaurant: Implication for enhancement of indoor air dilution. Journal of Hazardous Materials, 2022, 430, 128504.	12.4	22
17	Modelling and optimizing tree planning for urban climate in a subtropical high-density city. Urban Climate, 2022, 43, 101141.	5.7	13
18	Exposure and respiratory infection risk via the short-range airborne route. Building and Environment, 2022, 219, 109166.	6.9	13

#	Article	IF	CITATIONS
19	Fomite Transmission Follows Invasion Ecology Principles. MSystems, 2022, , e0021122.	3.8	1
20	Probable cross-corridor transmission of SARS-CoV-2 due to cross airflows and its control. Building and Environment, 2022, 218, 109137.	6.9	11
21	Role of pathogen-laden expiratory droplet dispersion and natural ventilation explaining a COVID-19 outbreak in a coach bus. Building and Environment, 2022, 220, 109160.	6.9	26
22	Explosive outbreak of SARS-CoV-2 Omicron variant is associated with vertical transmission in high-rise residential buildings in Hong Kong. Building and Environment, 2022, 221, 109323.	6.9	13
23	Outdoor Air Pollution and Indoor Window Condensation Associated with Childhood Symptoms of Allergic Rhinitis to Pollen. International Journal of Environmental Research and Public Health, 2022, 19, 8071.	2.6	6
24	Effects of Human Behavior Changes During the Coronavirus Disease 2019 (COVID-19) Pandemic on Influenza Spread in Hong Kong. Clinical Infectious Diseases, 2021, 73, e1142-e1150.	5.8	48
25	Toilets dominate environmental detection of severe acute respiratory syndrome coronavirus 2 in a hospital. Science of the Total Environment, 2021, 753, 141710.	8.0	114
26	Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. Journal of Hazardous Materials, 2021, 402, 123771.	12.4	72
27	Multi-route respiratory infection: When a transmission route may dominate. Science of the Total Environment, 2021, 752, 141856.	8.0	41
28	Indoor transmission of SARS oVâ€2. Indoor Air, 2021, 31, 639-645.	4.3	351
29	The respiratory infection inhalation route continuum. Indoor Air, 2021, 31, 279-281.	4.3	15
30	Inversion breakup over different shapes of urban areas. Building and Environment, 2021, 190, 107548.	6.9	5
31	Real human surface touch behavior based quantitative analysis on infection spread via fomite route in an office. Building and Environment, 2021, 191, 107578.	6.9	18
32	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	2.9	264
33	Covid-19 has redefined airborne transmission. BMJ, The, 2021, 373, n913.	6.0	130
34	Changes in local travel behaviour before and during the COVID-19 pandemic in Hong Kong. Cities, 2021, 112, 103139.	5.6	111
35	Hypothesis: SARSâ€CoVâ€2 transmission is predominated by the shortâ€range airborne route and exacerbated by poor ventilation. Indoor Air, 2021, 31, 921-925.	4.3	37
36	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	12.6	192

#	Article	IF	Citations
37	Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment, 2021, 196, 107788.	6.9	367
38	What dominates personal exposure? Ambient airflow pattern or local human thermal plume. Building and Environment, 2021, 196, 107790.	6.9	14
39	Investigating the urban heat and cool island effects during extreme heat events in highâ€density cities: A case study of Hong Kong from 2000 to 2018. International Journal of Climatology, 2021, 41, 6736-6754.	3.5	27
40	Correlating indoor and outdoor temperature and humidity in a sample of buildings in tropical climates. Indoor Air, 2021, 31, 2281-2295.	4.3	16
41	Quantitative city ventilation evaluation for urban canopy under heat island circulation without geostrophic winds: Multi-scale CFD model and parametric investigations. Building and Environment, 2021, 196, 107793.	6.9	16
42	Quantification of Lactobacillus delbrueckii subsp. Bulgaricus and its applicability as a tracer for studying contamination spread on environmental surfaces. Building and Environment, 2021, 197, 107869.	6.9	3
43	Lack of cross-transmission of SARS-CoV-2 between passenger's cabins on the Diamond Princess cruise ship. Building and Environment, 2021, 198, 107839.	6.9	14
44	Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Climate, 2021, 38, 100884.	5.7	18
45	High spatial-resolution classification of urban surfaces using a deep learning method. Building and Environment, 2021, 200, 107949.	6.9	15
46	Revisiting physical distancing threshold in indoor environment using infection-risk-based modeling. Environment International, 2021, 153, 106542.	10.0	29
47	Evidence for lack of transmission by close contact and surface touch in a restaurant outbreak of COVID-19. Journal of Infection, 2021, 83, 207-216.	3.3	60
48	Surface touch network structure determines bacterial contamination spread on surfaces and occupant exposure. Journal of Hazardous Materials, 2021, 416, 126137.	12.4	6
49	What is the risk of acquiring SARS-CoV-2 from the use of public toilets?. Science of the Total Environment, 2021, 792, 148341.	8.0	38
50	Analysis of efficacy of intervention strategies for COVID-19 transmission: A case study of Hong Kong. Environment International, 2021, 156, 106723.	10.0	21
51	Weakening personal protective behavior by Chinese university students after COVID-19 vaccination. Building and Environment, 2021, 206, 108367.	6.9	24
52	Basic routes of transmission of respiratory pathogensâ€"A new proposal for transmission categorization based on respiratory spray, inhalation, and touch. Indoor Air, 2021, 31, 3-6.	4.3	52
53	The urban moisture island phenomenon and its mechanisms in a highâ€rise highâ€density city. International Journal of Climatology, 2021, 41, E150.	3.5	24
54	Modeling and Experimental Validation of Microbial Transfer via Surface Touch. Environmental Science &	10.0	14

#	Article	IF	CITATIONS
55	Footwear microclimate and its effects on the microbial community of the plantar skin. Scientific Reports, 2021, 11, 20356.	3.3	5
56	The COVIDâ€19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air. Indoor Air, 2021, 31, 1683-1686.	4.3	19
57	Natural convection over vertical and horizontal heated flat surfaces: A review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications. Physics of Fluids, 2021, 33, .	4.0	36
58	Why don't we just open the windows?. BMJ, The, 2021, 375, n2895.	6.0	13
59	COVID-19 Vaccination Did Not Change the Personal Protective Behaviors of Healthcare Workers in China. Frontiers in Public Health, 2021, 9, 777426.	2.7	14
60	City-scale morphological influence on diurnal urban air temperature. Building and Environment, 2020, 169, 106527.	6.9	16
61	Hand hygiene and surface cleaning should be paired for prevention of fomite transmission. Indoor Air, 2020, 30, 49-59.	4.3	24
62	Indoor air: A short history of holistic and reductionistic approaches. Indoor Air, 2020, 30, 3-6.	4.3	1
63	Correlation between the normal position of a particle on a rough surface and the van der Waals force. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124096.	4.7	9
64	High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model. Environmental Pollution, 2020, 256, 113433.	7.5	47
65	Urban plume characteristics under various wind speed, heat flux, and stratification conditions. Atmospheric Environment, 2020, 239, 117774.	4.1	17
66	Probable Evidence of Fecal Aerosol Transmission of SARS-CoV-2 in a High-Rise Building. Annals of Internal Medicine, 2020, 173, 974-980.	3.9	198
67	Early-life exposure to air pollution and childhood allergic diseases: an update on the link and its implications. Expert Review of Clinical Immunology, 2020, 16, 813-827.	3.0	39
68	Wind-driven pumping flow ventilation of highrise buildings: Effects of upstream building arrangements and opening area ratios. Science of the Total Environment, 2020, 722, 137924.	8.0	13
69	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	10.0	933
70	Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. Aerosol Science and Technology, 2020, 54, 869-879.	3.1	23
71	A Comparison of Infection Venues of COVID-19 Case Clusters in Northeast China. International Journal of Environmental Research and Public Health, 2020, 17, 3955.	2.6	11
72	Presence of Influenza Virus on Touch Surfaces in Kindergartens and Primary Schools. Journal of Infectious Diseases, 2020, 222, 1329-1333.	4.0	18

#	Article	IF	Citations
73	Frequent recovery of influenza A but not influenza B virus RNA in aerosols in pediatric patient rooms. Indoor Air, 2020, 30, 805-815.	4.3	10
74	Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 2020, 26, 676-680.	30.7	1,753
75	Most self-touches are with the nondominant hand. Scientific Reports, 2020, 10, 10457.	3.3	21
76	Experimental study of thermal plumes generated by a cluster of high-rise compact buildings under moderate background wind conditions. Building and Environment, 2020, 181, 107076.	6.9	8
77	Impact of intervention methods on COVID-19 transmission in Shenzhen. Building and Environment, 2020, 180, 107106.	6.9	22
78	Urban heat island circulations over the Beijing-Tianjin region under calm and fair conditions. Building and Environment, 2020, 180, 107063.	6.9	28
79	Infection Spread and High-Resolution Detection of Close Contact Behaviors. International Journal of Environmental Research and Public Health, 2020, 17, 1445.	2.6	31
80	Heatstroke recovery at home as predicted by human thermoregulation modeling. Building and Environment, 2020, 173, 106752.	6.9	15
81	Deposition of bronchiole-originated droplets in the lower airways during exhalation. Journal of Aerosol Science, 2020, 142, 105524.	3.8	8
82	Quantifying the relative impact of contact heterogeneity on MRSA transmission in ICUs - a modelling study. BMC Infectious Diseases, 2020, 20, 6.	2.9	2
83	Short-range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 2020, 176, 106859.	6.9	256
84	Close contact behavior in indoor environment and transmission of respiratory infection. Indoor Air, 2020, 30, 645-661.	4.3	74
85	Conditions for transition from a plume to a dome above a heated horizontal area. International Journal of Heat and Mass Transfer, 2020, 156, 119868.	4.8	15
86	Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Science of the Total Environment, 2020, 726, 138147.	8.0	86
87	Water tank modelling of variations in inversion breakup over a circular city. Building and Environment, 2019, 164, 106342.	6.9	14
88	Effect of city shape on urban wind patterns and convective heat transfer in calm and stable background conditions. Building and Environment, 2019, 162, 106288.	6.9	31
89	CFD simulation of "pumping―flow mechanism of an urban building affected by an upstream building in high Reynolds flows. Energy and Buildings, 2019, 202, 109330.	6.7	18
90	The dynamic fomite transmission of Methicillin-resistant Staphylococcus aureus in hospitals and the possible improved intervention methods. Building and Environment, 2019, 161, 106246.	6.9	20

#	Article	IF	Citations
91	Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong. Energy, 2019, 189, 116208.	8.8	34
92	In Memory of Professor Jan Sundell (July 10, 1943â€May 27, 2019). Indoor Air, 2019, 29, 701-703.	4.3	0
93	Editorial: the airborne microbiome - implications for aerosol transmission and infection control – special issue. BMC Infectious Diseases, 2019, 19, 755.	2.9	7
94	Combined effects of traffic air pollution and home environmental factors on preterm birth in China. Ecotoxicology and Environmental Safety, 2019, 184, 109639.	6.0	32
95	New sequentialâ€touch method to determine bacterial contact transfer rate from finger to surface. Journal of Applied Microbiology, 2019, 127, 605-615.	3.1	11
96	Interacting urban heat island circulations as affected by weak background wind. Building and Environment, 2019, 160, 106224.	6.9	14
97	Wind driven "pumping―fluid flow and turbulent mean oscillation across high-rise building enclosures with multiple naturally ventilated apertures. Sustainable Cities and Society, 2019, 50, 101619.	10.4	18
98	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie - International Edition, 2019, 58, 9871-9875.	13.8	45
99	TIV and PIV based natural convection study over a square flat plate under stable stratification. International Journal of Heat and Mass Transfer, 2019, 140, 660-670.	4.8	14
100	Physical factors that affect microbial transfer during surface touch. Building and Environment, 2019, 158, 28-38.	6.9	29
101	Pathway using WUDAPT's Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Climate, 2019, 28, 100459.	5. 7	43
102	Introducing new Associate Editors and Editorial Board Members for Indoor Air. Indoor Air, 2019, 29, 367-368.	4.3	0
103	PIV based POD analysis of coherent structures in flow patterns generated by triple interacting buoyant plumes. Building and Environment, 2019, 158, 165-181.	6.9	24
104	A novel partial lid for mechanical defeatherers reduced aerosol dispersion during processing of avian influenza virus infected poultry. PLoS ONE, 2019, 14, e0216478.	2.5	3
105	Human behavior during close contact in a graduate student office. Indoor Air, 2019, 29, 577-590.	4.3	16
106	Increased infection severity in downstream cities in infectious disease transmission and tourists surveillance analysis. Journal of Theoretical Biology, 2019, 470, 20-29.	1.7	9
107	Finding the most valuable references for interdisciplinary research. Indoor Air, 2019, 29, 3-4.	4.3	2
108	Detection of Influenza and Other Respiratory Viruses in Air Sampled From a University Campus: A Longitudinal Study. Clinical Infectious Diseases, 2019, 70, 850-858.	5.8	15

#	Article	IF	Citations
109	Recognition of aerosol transmission of infectious agents: a commentary. BMC Infectious Diseases, 2019, 19, 101.	2.9	556
110	Health effects of physical activity as predicted by particle deposition in the human respiratory tract. Science of the Total Environment, 2019, 657, 819-826.	8.0	37
111	Dual steady flow solutions of heat and pollutant removal from a slot ventilated welding enclosure containing a bottom heating source. International Journal of Heat and Mass Transfer, 2019, 132, 11-24.	4.8	12
112	Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 2019, 169, 237-245.	7.5	197
113	Urban heat island circulations of an idealized circular city as affected by background wind speed. Building and Environment, 2019, 148, 433-447.	6.9	27
114	Airborne pollutant dilution inside the deep street canyons subjecting to thermal buoyancy driven flows: Effects of representative urban skylines. Building and Environment, 2019, 149, 592-606.	6.9	33
115	Experimental investigation of near-field stream-wise flow development and spatial structure in triple buoyant plumes. Building and Environment, 2019, 149, 79-89.	6.9	20
116	The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings. Applied Energy, 2019, 235, 129-138.	10.1	34
117	Mean shear flow in recirculating turbulent urban convection and the plume-puff eddy structure below stably stratified inversion layers. Theoretical and Applied Climatology, 2019, 135, 1485-1499.	2.8	8
118	Interventions to Reduce Personal Exposures to Air Pollution: A Primer for Health Care Providers. Global Heart, 2019, 14, 47.	2.3	20
119	Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2386-E2392.	7.1	71
120	Interaction of multiple urban heat island circulations under idealised settings. Building and Environment, 2018, 134, 10-20.	6.9	45
121	Harmonic analysis of 130-year hourly air temperature in Hong Kong: detecting urban warming from the perspective of annual and daily cycles. Climate Dynamics, 2018, 51, 613-625.	3.8	14
122	Non-uniform ground-level wind patterns in a heat dome over a uniformly heated non-circular city. International Journal of Heat and Mass Transfer, 2018, 124, 233-246.	4.8	34
123	Parental stress and air pollution increase childhood asthma in China. Environmental Research, 2018, 165, 23-31.	7.5	46
124	Characterizing dynamic transmission of contaminants on a surface touch network. Building and Environment, 2018, 129, 107-116.	6.9	15
125	Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: Plume merging mechanism. Building and Environment, 2018, 131, 32-43.	6.9	27
126	Seasonal variation of window opening behaviors in two naturally ventilated hospital wards. Building and Environment, 2018, 130, 85-93.	6.9	56

#	Article	IF	CITATIONS
127	Phenols as Diamagnetic <i>T</i> ₂ â€Exchange Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2018, 24, 1259-1263.	3.3	13
128	A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea. Indoor Air, 2018, 28, 51-63.	4.3	71
129	A human behavior integrated hierarchical model of airborne disease transmission in a large city. Building and Environment, 2018, 127, 211-220.	6.9	45
130	Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses. Indoor Air, 2018, 28, 394-403.	4.3	136
131	Assessing the risk of downwind spread of avian influenza virus via airborne particles from an urban wholesale poultry market. Building and Environment, 2018, 127, 120-126.	6.9	19
132	Stone forest as a smallâ€scale field model for the study of urban climate. International Journal of Climatology, 2018, 38, 3723-3731.	3.5	10
133	The Street Air Warming Phenomenon in a High-Rise Compact City. Atmosphere, 2018, 9, 402.	2.3	7
134	Surface touch and its network growth in a graduate student office. Indoor Air, 2018, 28, 963-972.	4.3	31
135	Heatstroke at home: Prediction by thermoregulation modeling. Building and Environment, 2018, 137, 147-156.	6.9	38
136	Transmission routes of influenza A(H1N1)pdm09: analyses of inflight outbreaks. Epidemiology and Infection, 2018, 146, 1731-1739.	2.1	9
137	Two-dimensional numerical simulation of wind driven ventilation across a building enclosure with two free apertures on the rear side: Vortex shedding and "pumping flow mechanism― Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179, 449-462.	3.9	17
138	Unsteady large-scale flow patterns and dynamic vortex movement in near-field triple buoyant plumes. Building and Environment, 2018, 142, 288-300.	6.9	15
139	Equilibrium of particle distribution on surfaces due to touch. Building and Environment, 2018, 143, 461-472.	6.9	11
140	Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environmental Research Letters, 2018, 13, 034015.	5.2	62
141	Computational fluid dynamics predictions of nonâ€isothermal ventilation flow—How can the user factor be minimized?. Indoor Air, 2018, 28, 866-880.	4.3	19
142	Wind weakening in a dense high-rise city due to over nearly five decades of urbanization. Building and Environment, 2018, 138, 207-220.	6.9	62
143	Probable transmission routes of the influenza virus in a nosocomial outbreak. Epidemiology and Infection, 2018, 146, 1114-1122.	2.1	21
144	Transmission of Influenza A in a Student Office Based on Realistic Person-to-Person Contact and Surface Touch Behaviour. International Journal of Environmental Research and Public Health, 2018, 15, 1699.	2.6	58

#	Article	IF	CITATIONS
145	The urban cool island phenomenon in a highâ€rise highâ€density city and its mechanisms. International Journal of Climatology, 2017, 37, 890-904.	3.5	124
146	Human thermal sensation and comfort in a non-uniform environment with personalized heating. Science of the Total Environment, 2017, 578, 242-248.	8.0	69
147	Evaporation and dispersion of respiratory droplets from coughing. Indoor Air, 2017, 27, 179-190.	4.3	229
148	Short-range airborne transmission of expiratory droplets between two people. Indoor Air, 2017, 27, 452-462.	4.3	221
149	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	14.6	95
150	The lock-up phenomenon of exhaled flow in a stable thermally-stratified indoor environment. Building and Environment, 2017, 116, 246-256.	6.9	47
151	Buoyancy and turbulence-driven atmospheric circulation over urban areas. Journal of Environmental Sciences, 2017, 59, 63-71.	6.1	26
152	Impact of land surface heterogeneity on urban heat island circulation and seaâ€land breeze circulation in Hong Kong. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4332-4352.	3.3	44
153	Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus. BMC Infectious Diseases, 2017, 17, 85.	2.9	30
154	On the asymmetry of the urban daily air temperature cycle. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5625-5635.	3.3	32
155	The effect of building spacing on near-field temporal evolution of triple building plumes. Building and Environment, 2017, 122, 35-49.	6.9	17
156	Association between prenatal exposure to industrial air pollution and onset of early childhood ear infection in China. Atmospheric Environment, 2017, 157, 18-26.	4.1	29
157	Numerical modeling of particle deposition in ferret airways: A comparison with humans. Aerosol Science and Technology, 2017, 51, 477-487.	3.1	12
158	Diurnal variation of natural convective wall flows and the resulting air change rate in a homogeneous urban canopy layer. Energy and Buildings, 2017, 153, 201-208.	6.7	13
159	Near-field merging and penetration of triple starting plumes from volumetric heat sources in a calm environment. International Journal of Heat and Mass Transfer, 2017, 115, 1321-1333.	4.8	11
160	A Simple Daily Cycle Temperature Boundary Condition for Ground Surfaces in CFD Predictions of Urban Wind Flows. Journal of Applied Meteorology and Climatology, 2017, 56, 2963-2980.	1.5	4
161	Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy and Buildings, 2017, 155, 324-338.	6.7	54
162	Horizontal extent of the urban heat dome flow. Scientific Reports, 2017, 7, 11681.	3.3	35

#	Article	IF	Citations
163	ISIAQ Academy Awards 2016. Indoor Air, 2017, 27, 705-707.	4.3	O
164	A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1, 977-982.	22.5	58
165	Logistic growth of a surface contamination network and its role in disease spread. Scientific Reports, 2017, 7, 14826.	3.3	62
166	The Diurnal Cycle of Urban Thermal Environment in Scale-model Street Canyons by Outdoor Field Measurement. Procedia Engineering, 2017, 198, 743-757.	1.2	7
167	Free vent boundary conditions for thermal buoyancy driven laminar flows inside open building enclosures. Building and Environment, 2017, 111, 10-23.	6.9	7
168	A combined fully-resolved and porous approach for building cluster wind flows. Building Simulation, 2017, 10, 97-109.	5.6	13
169	Airborne or Fomite Transmission for Norovirus? A Case Study Revisited. International Journal of Environmental Research and Public Health, 2017, 14, 1571.	2.6	28
170	Human Cough as a Two-Stage Jet and Its Role in Particle Transport. PLoS ONE, 2017, 12, e0169235.	2.5	85
171	Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS ONE, 2017, 12, e0181558.	2.5	93
172	Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics, 2016, 6, 1588-1600.	10.0	74
173	The †impurity' of indoor air. Indoor Air, 2016, 26, 3-5.	4.3	3
174	Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Science of the Total Environment, 2016, 560-561, 186-196.	8.0	98
175	Natural convection flows along a 16-storey high-rise building. Building and Environment, 2016, 107, 215-225.	6.9	51
176	Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control, 2016, 44, S102-S108.	2.3	355
177	A New Convective Velocity Scale for Studying Diurnal Urban Heat Island Circulation. Journal of Applied Meteorology and Climatology, 2016, 55, 2151-2164.	1.5	35
178	Potential impact of a ventilation intervention for influenza in the context of a dense indoor contact network in Hong Kong. Science of the Total Environment, 2016, 569-570, 373-381.	8.0	22
179	Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respiratory Medicine, 2016, 121, 67-73.	2.9	103
180	Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environmental Research, 2016, 150, 119-127.	7.5	228

#	Article	IF	CITATIONS
181	Possible user-dependent CFD predictions of transitional flow in building ventilation. Building and Environment, 2016, 99, 130-141.	6.9	22
182	Low re-inhalation of the exhaled flow during normal nasal breathing in a pediatric airway replica. Building and Environment, 2016 , 97 , $40-47$.	6.9	6
183	Predicting urban heat island circulation using CFD. Building and Environment, 2016, 99, 82-97.	6.9	82
184	Quantification of Influenza Virus RNA in Aerosols in Patient Rooms. PLoS ONE, 2016, 11, e0148669.	2.5	51
185	Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City. PLoS ONE, 2016, 11, e0162481.	2.5	38
186	CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget, 2016, 7, 6369-6378.	1.8	49
187	The Impact of Urbanization on Moisture Excess in Hong Kong. Energy Procedia, 2015, 78, 3061-3065.	1.8	1
188	The Impact of City Scale Morphological and Anthropogenic Heat Parameters on Daily Temperature Cycles. Energy Procedia, 2015, 78, 3066-3071.	1.8	0
189	Challenges for Modeling Energy Use in High-rise Office Buildings in Hong Kong. Procedia Engineering, 2015, 121, 513-520.	1.2	12
190	Experimental Assessment on Heat Transfer and Smoke Flow Characteristics of a Typical Elevated Chinese Kang. International Journal of Green Energy, 2015, 12, 1178-1188.	3.8	6
191	Enhanced spread of expiratory droplets by turbulence in a cough jet. Building and Environment, 2015, 93, 86-96.	6.9	226
192	The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Building and Environment, 2015, 90, 146-156.	6.9	185
193	Potential airborne transmission between two isolation cubicles through a shared anteroom. Building and Environment, 2015, 89, 264-278.	6.9	56
194	Suitability of acrylic and copper globe thermometers for diurnal outdoor settings. Building and Environment, 2015, 89, 279-294.	6.9	23
195	Engineering control of respiratory infection and low-energy design of healthcare facilities. Science and Technology for the Built Environment, 2015, 21, 25-34.	1.7	24
196	Absence of Detectable Influenza RNA Transmitted via Aerosol during Various Human Respiratory Activities – Experiments from Singapore and Hong Kong. PLoS ONE, 2014, 9, e107338.	2.5	21
197	The influence of human walking on the flow and airborne transmission in a six-bed isolation room: Tracer gas simulation. Building and Environment, 2014, 77, 119-134.	6.9	127
198	Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Building and Environment, 2014, 79, 152-167.	6.9	131

#	Article	IF	Citations
199	Advances in wind energy resource exploitation in urban environment: A review. Renewable and Sustainable Energy Reviews, 2014, 37, 613-626.	16.4	170
200	Smoke flow bifurcation due to opposing buoyancy in two horizontally connected compartments. Fire Safety Journal, 2013, 59, 62-75.	3.1	10
201	Development of a Three-Dimensional Urban Energy Model for Predicting and Understanding Surface Temperature Distribution. Boundary-Layer Meteorology, 2013, 149, 303-321.	2.3	38
202	Evaluation of intervention strategies in schools including ventilation for influenza transmission control. Building Simulation, 2012, 5, 29-37.	5.6	13
203	Experimental verification of tracking algorithm for dynamically-releasing single indoor contaminant. Building Simulation, 2012, 5, 5-14.	5.6	46
204	Application of building simulation tools for studying airborne infection and its control. Building Simulation, 2012, 5, 3-4.	5.6	1
205	Dispersion of coughed droplets in a fully-occupied high-speed rail cabin. Building and Environment, 2012, 47, 58-66.	6.9	106
206	Macroscopic simulations of turbulent flows through high-rise building arrays using a porous turbulence model. Building and Environment, 2012, 49, 41-54.	6.9	31
207	Predicting and understanding temporal 3D exterior surface temperature distribution in an ideal courtyard. Building and Environment, 2012, 57, 38-48.	6.9	55
208	The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Building and Environment, 2012, 56, 346-360.	6.9	314
209	On the contribution of mean flow and turbulence to city breathability: The case of long streets with tall buildings. Science of the Total Environment, 2012, 416, 362-373.	8.0	79
210	Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. Journal of Aerosol Science, 2011, 42, 1-10.	3.8	73
211	Modality of human expired aerosol size distributions. Journal of Aerosol Science, 2011, 42, 839-851.	3.8	523
212	Revisiting Internal Pressure Dynamics in a Single Opening Enclosure Ventilated by Wind. International Journal of Ventilation, 2011, 10, 1-18.	0.4	1
213	Effects of Urban Ventilation Patterns on the Carbon Monoxide Concentration in a High-Rise Mega City. International Journal of Ventilation, 2011, 10, 239-250.	0.4	3
214	Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air, 2011, 21, 191-204.	4.3	529
215	The secret behind the mask. Indoor Air, 2011, 21, 89-91.	4.3	7
216	CFD and ventilation research. Indoor Air, 2011, 21, 442-453.	4.3	131

#	Article	IF	Citations
217	Observing and quantifying airflows in the infection control of aerosol- and airborne-transmitted diseases: an overview of approaches. Journal of Hospital Infection, 2011, 77, 213-222.	2.9	113
218	Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 1036-1055.	3.9	71
219	Passive urban ventilation by combined buoyancy-driven slope flow and wall flow: Parametric CFD studies on idealized city models. Atmospheric Environment, 2011, 45, 5946-5956.	4.1	60
220	Age of air and air exchange efficiency in high-rise urban areas and its link to pollutant dilution. Atmospheric Environment, $2011, 45, 5572-5585$.	4.1	87
221	Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 2011, 45, 4329-4343.	4.1	213
222	Thermal conditions and ventilation in an ideal city model of Hong Kong. Energy and Buildings, 2011, 43, 1139-1148.	6.7	38
223	Special Issueâ€"Selected Papers Presented in the 6th International Symposium on Heating, Ventilating and Air Conditioning, Nanjing, China, 6â€"9 November, 2009. Energy and Buildings, 2011, 43, 1039.	6.7	1
224	Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong. Journal of the Royal Society Interface, 2011, 8, 699-710.	3.4	55
225	Multiple Solutions of Smoke Flow in a Building with an Opposing Wind. International Journal of Ventilation, 2010, 9, 99-144.	0.4	6
226	Simple Correction Methods of Infrared Thermography for Building Exterior Surfaces. International Journal of Ventilation, 2010, 9, 261-272.	0.4	1
227	Flow mechanisms and flow capacity in idealized long-street city models. Building and Environment, 2010, 45, 1042-1053.	6.9	22
228	CFD modelling of the effect of fire source geometry and location on smoke flow multiplicity. Building Simulation, 2010, 3, 205-214.	5.6	19
229	Particle removal efficiency of the portable HEPA air cleaner in a simulated hospital ward. Building Simulation, 2010, 3, 215-224.	5.6	41
230	Thermal and energy analysis of a Chinese kang. Frontiers of Energy and Power Engineering in China, 2010, 4, 84-92.	0.4	3
231	Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model. Boundary-Layer Meteorology, 2010, 136, 129-159.	2.3	65
232	Intake fraction of nonreactive motor vehicle exhaust in Hong Kong. Atmospheric Environment, 2010, 44, 1913-1918.	4.1	54
233	Natural ventilation for reducing airborne infection in hospitals. Building and Environment, 2010, 45, 559-565.	6.9	112
234	Wind conditions and ventilation in high-rise long street models. Building and Environment, 2010, 45, 1353-1365.	6.9	47

#	Article	IF	CITATIONS
235	Risk of cross-infection in a hospital ward with downward ventilation. Building and Environment, 2010, 45, 2008-2014.	6.9	65
236	Ventilation strategy and air change rates in idealized high-rise compact urban areas. Building and Environment, 2010, 45, 2754-2767.	6.9	84
237	Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room. Indoor Air, 2010, 20, 284-297.	4.3	103
238	Surface Temperature Distribution of Chinese Kangs. International Journal of Green Energy, 2010, 7, 347-360.	3.8	3
239	Possible Role of Aerosol Transmission in a Hospital Outbreak of Influenza. Clinical Infectious Diseases, 2010, 51, 1176-1183.	5 . 8	104
240	Airborne transmission of disease in hospitals. Journal of the Royal Society Interface, 2009, 6, S697-702.	3.4	148
241	Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface, 2009, 6, S703-14.	3.4	364
242	Effect of urban morphology on wind condition in idealized city models. Atmospheric Environment, 2009, 43, 869-878.	4.1	113
243	City ventilation of Hong Kong at no-wind conditions. Atmospheric Environment, 2009, 43, 3111-3121.	4.1	75
244	Pollutant dispersion in idealized city models with different urban morphologies. Atmospheric Environment, 2009, 43, 6011-6025.	4.1	48
245	Chinese kangs and building energy consumption. Science Bulletin, 2009, 54, 992-1002.	9.0	9
246	Thermal storage performance analysis on Chinese kangs. Energy and Buildings, 2009, 41, 452-459.	6.7	45
247	Chinese kang as a domestic heating system in rural northern China—A review. Energy and Buildings, 2009, 41, 111-119.	6.7	147
248	Spatial distribution of infection risk of SARS transmission in a hospital ward. Building and Environment, 2009, 44, 1651-1658.	6.9	137
249	Age of air and air exchange efficiency in idealized city models. Building and Environment, 2009, 44, 1714-1723.	6.9	124
250	Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science, 2009, 40, 122-133.	3.8	778
251	Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 2009, 40, 256-269.	3.8	848
252	Coupling of thermal mass and natural ventilation in buildings. Energy and Buildings, 2008, 40, 979-986.	6.7	118

#	Article	IF	CITATIONS
253	Cooling load reduction by using thermal mass and night ventilation. Energy and Buildings, 2008, 40, 2052-2058.	6.7	143
254	Dispersion of exhalation pollutants in a two-bed hospital ward with a downward ventilation system. Building and Environment, 2008, 43, 344-354.	6.9	125
255	Solution Multiplicity of Smoke Flows in a Simple Building. Fire Safety Science, 2008, 9, 895-906.	0.3	3
256	Transmission of influenza A in human beings. Lancet Infectious Diseases, The, 2007, 7, 758.	9.1	25
257	Dispersion and settling characteristics of evaporating droplets in ventilated room. Building and Environment, 2007, 42, 1011-1017.	6.9	27
258	Role of ventilation in airborne transmission of infectious agents in the built environment? a multidisciplinary systematic review. Indoor Air, 2007, 17, 2-18.	4.3	822
259	How far droplets can move in indoor environments? revisiting the Wells evaporation?falling curve. Indoor Air, 2007, 17, 211-225.	4.3	776
260	Indoor Air and infection. Indoor Air, 2007, 17, 335-336.	4.3	1
261	Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 2006, 64, 100-114.	2.9	503
262	Achieving Natural and Hybrid Ventilation in Practice. International Journal of Ventilation, 2006, 5, 115-130.	0.4	13
263	Thermal Mass Design in Buildings – Heavy or Light?. International Journal of Ventilation, 2006, 5, 143-150.	0.4	24
264	Nonlinear Dynamic Aalysis of Natural Ventilation in a Two-Zone Building: Part Bâ€"CFD Simulations. HVAC and R Research, 2006, 12, 257-278.	0.6	4
265	Nonlinear Dynamic Analysis of Natural Ventilation in a Two-Zone Building: Part A—Theoretical Analysis. HVAC and R Research, 2006, 12, 231-255.	0.6	16
266	Ventilation for Better Indoor Air Quality - Selected Papers from the Indoor Air 2005 Conference. International Journal of Ventilation, 2006, 5, 273-273.	0.4	0
267	Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems. Indoor Air, 2006, 16, 111-128.	4.3	226
268	Flow bifurcation due to opposing buoyancy in two vertically connected open cavities. International Journal of Heat and Mass Transfer, 2006, 49, 3298-3312.	4.8	19
269	Calculation of wind-driven cross ventilation in buildings with large openings. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94, 925-947.	3.9	76
270	Bacterial survival in evaporating deposited droplets on a teflon-coated surface. Applied Microbiology and Biotechnology, 2006, 73, 703-712.	3.6	46

#	Article	IF	CITATIONS
271	Probable Roles of Bio-Aerosol Dispersion in the SARS Outbreak in Amoy Gardens, Hong Kong. , 2006, , 305-327.		2
272	NONLINEAR RESONANCE AND QUASI-PERIODIC SOLUTIONS FOR VENTILATION FLOWS IN A SINGLE OPENING ENCLOSURE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1801-1808.	1.7	3
273	Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air, 2005, 15, 83-95.	4.3	320
274	Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens. Indoor Air, 2005, 15 , $96-111$.	4.3	153
275	Investigating potential of natural driving forces for ventilation in four major cities in China. Building and Environment, 2005, 40, 738-746.	6.9	48
276	Temporal-Spatial Analysis of Severe Acute Respiratory Syndrome among Hospital Inpatients. Clinical Infectious Diseases, 2005, 40, 1237-1243.	5.8	102
277	Multiple Solutions in a Building with Four Openings Ventilated by Combined Forces. Indoor and Built Environment, 2005, 14, 347-358.	2.8	5
278	An Example of Solution Multiplicity in a Building with Bi-directional Flow Openings. Indoor and Built Environment, 2005, 14, 359-369.	2.8	2
279	Door-opening motion can potentially lead to a transient breakdown in negative-pressure isolation conditions: the importance of vorticity and buoyancy airflows. Journal of Hospital Infection, 2005, 61, 283-286.	2.9	88
280	Cluster of SARS among Medical Students Exposed to Single Patient, Hong Kong. Emerging Infectious Diseases, 2004, 10, 269-276.	4.3	229
281	Evidence of Airborne Transmission of SARS. New England Journal of Medicine, 2004, 351, 609-611.	27.0	18
282	Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus. New England Journal of Medicine, 2004, 350, 1731-1739.	27.0	1,045
283	Predicting Super Spreading Events during the 2003 Severe Acute Respiratory Syndrome Epidemics in Hong Kong and Singapore. American Journal of Epidemiology, 2004, 160, 719-728.	3.4	87
284	Experimental and CFD evidence of multiple solutions in a naturally ventilated building. Indoor Air, 2004, 14, 43-54.	4.3	67
285	Designing Thermal Mass in Naturally Ventilated Buildings. International Journal of Ventilation, 2004, 2, 313-324.	0.4	14
286	Robustness of Air Distribution in Plenum-Based Ductless Ventilation Systems. International Journal of Ventilation, 2004, 3, 105-118.	0.4	0
287	A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmospheric Environment, 2003, 37, 4277-4285.	4.1	73
288	Nonlinear coupling between thermal mass and natural ventilation in buildings. International Journal of Heat and Mass Transfer, 2003, 46, 1251-1264.	4.8	78

#	Article	IF	CITATIONS
289	Enhancement of natural ventilation in a solar house with a solar chimney and a solid adsorption cooling cavity. Solar Energy, 2003, 74, 65-75.	6.1	44
290	Fine bubble modelling of smoke flows. Fire Safety Journal, 2003, 38, 285-298.	3.1	1
291	A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SETâ^—). Building and Environment, 2003, 38, 33-44.	6.9	89
292	An experimental investigation of a solar chimney model with uniform wall heat flux. Building and Environment, 2003, 38, 893-906.	6.9	210
293	Analysis Methods for Natural and Hybrid Ventilation - a Critical Literature Review and Recent Developments. International Journal of Ventilation, 2003, 1, 3-20.	0.4	39
294	Spurious Numerical Solutions in Coupled Natural Ventilation and Thermal Analyses. International Journal of Ventilation, 2002, $1,1$ -12.	0.4	5
295	Buoyancy-driven displacement natural ventilation in a single-zone building with three-level openings. Building and Environment, 2002, 37, 295-303.	6.9	48
296	A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources. International Journal of Heat and Mass Transfer, 2002, 45, 3437-3446.	4.8	74
297	Interaction between discrete heat sources in horizontal natural convection enclosures. International Journal of Heat and Mass Transfer, 2002, 45, 5117-5132.	4.8	72
298	Natural ventilation in an enclosure induced by a heat source distributed uniformly over a vertical wall. Building and Environment, 2001, 36, 493-501.	6.9	24
299	Experimental modelling of buoyancy-driven flows in buildings using a fine-bubble technique. Building and Environment, 2001, 36, 447-455.	6.9	15
300	Some examples of solution multiplicity in natural ventilation. Building and Environment, 2001, 36, 851-858.	6.9	61
301	Natural ventilation induced by combined wind and thermal forces. Building and Environment, 2001, 36, 59-71.	6.9	165
302	Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part l—Flow visualisations and simulations. Chemical Engineering Science, 2001, 56, 3855-3878.	3.8	55
303	Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part II—LDV measurements and simulations. Chemical Engineering Science, 2001, 56, 3879-3892.	3.8	26
304	Prediction of natural ventilation in buildings with large openings. Building and Environment, 2000, 35, 191-206.	6.9	82
305	Buoyancy-driven natural ventilation in a thermally stratified one-zone building. Building and Environment, 2000, 35, 207-214.	6.9	87
306	Estimating Equilibration Times and Heating/Cooling Rates in Heat Treatment of Workpieces with Arbitrary Geometry. Journal of Materials Engineering and Performance, 2000, 9, 62-71.	2.5	18

#	Article	IF	CITATIONS
307	CFD MODELLING OF NATURAL CONVECTION HEAT AND MASS TRANSFER IN HYGROSCOPIC POROUS MEDIA. Drying Technology, 2000, 18, 2175-2201.	3.1	8
308	Modelling of the Indoor Environment - Particle Dispersion and Deposition. Indoor Air, 1998, 8, 113-122.	4.3	121
309	A numerical method for two-phase flows with an interface. Environmental Modelling and Software, 1998, 13, 247-255.	4.5	35
310	Particle transport in a bottom-feed separation vessel. Applied Mathematical Modelling, 1998, 22, 1023-1036.	4.2	3
311	HIGH-RAYLEIGH-NUMBER NATURAL CONVECTION IN AN ENCLOSURE CONTAINING A POROUS LAYER. , 1998, , .		2
312	Residential Kitchen Range Hoods - Buoyancy-Capture Principle and Capture Efficiency Revisited. Indoor Air, 1997, 7, 151-157.	4.3	37
313	Numerical evaluation of wind-induced dispersion of pollutants around a building. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68, 757-766.	3.9	63
314	Wavenumber-Extended High-Order Upwind-Biased Finite-Difference Schemes for Convective Scalar Transport. Journal of Computational Physics, 1997, 133, 235-255.	3.8	75
315	AN ANISOTROPIC LOCAL GRID REFINEMENT METHOD FOR FLUID FLOW SIMULATION. Numerical Heat Transfer, Part B: Fundamentals, 1996, 30, 195-215.	0.9	5
316	Derivation of capture efficiency of kitchen range hoods in a confined space. Building and Environment, 1996, 31, 461-468.	6.9	57
317	Implementation of some higher-order convection schemes on non-uniform grids. International Journal for Numerical Methods in Fluids, 1995, 21, 1201-1220.	1.6	15
318	ASSESSMENT OF HIGHER-ORDER UPWIND SCHEMES INCORPORATING FCT FOR CONVECTION-DOMINATEDPROBLEMS. Numerical Heat Transfer, Part B: Fundamentals, 1995, 27, 1-21.	0.9	33
319	Simulation of room flows with small ventilation openings by a local grid-refinement technique. Building Services Engineering Research and Technology, 1994, 15, 1-10.	1.8	2
320	General flow and thermal boundary conditions in indoor air flow simulation. Building and Environment, 1994, 29, 275-281.	6.9	6
321	Effects of thermal radiation on airflow with displacement ventilation: an experimental investigation. Energy and Buildings, 1993, 19, 263-274.	6.7	32
322	Numerical prediction of airflow and heat-radiation interaction in a room with displacement ventilation. Energy and Buildings, 1993, 20, 27-43.	6.7	32
323	Vertical Temperature Profiles in Rooms Ventilated by Displacement: Full-Scale Measurement and Nodal Modelling. Indoor Air, 1992, 2, 225-243.	4.3	88