
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3487198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic and hybrid molecular systems. Mendeleev Communications, 2015, 25, 75-82.	0.6	170
2	A novel (S)-proline-modified task-specific chiral ionic liquid—an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Letters, 2008, 49, 1212-1216.	0.7	122
3	Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72, 6191-6281.	1.0	112
4	Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles <i>via</i> stereoselective aza-Michael reactions. Organic and Biomolecular Chemistry, 2019, 17, 3670-3708.	1.5	110
5	Organocatalysis of asymmetric aldol reaction. Catalysts and reagents. Russian Chemical Reviews, 2009, 78, 737-784.	2.5	109
6	Nazarov reaction: current trends and recent advances in the synthesis of natural compounds and their analogs. Organic and Biomolecular Chemistry, 2017, 15, 8245-8269.	1.5	104
7	Challenges in the development of organic and hybrid molecular systems. Mendeleev Communications, 2016, 26, 365-374.	0.6	89
8	Prospective Symbiosis of Green Chemistry and Energetic Materials. ChemSusChem, 2017, 10, 3914-3946.	3.6	87
9	Organic and hybrid systems: from science to practice. Mendeleev Communications, 2017, 27, 425-438.	0.6	86
10	A new (S)-prolinamide modified by an ionic liquid moiety—a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron, 2010, 66, 513-518.	1.0	70
11	Hydroxy-α-amino acids modified by ionic liquid moieties: recoverable organocatalysts for asymmetric aldol reactions in the presence of water. Tetrahedron, 2009, 65, 1366-1372.	1.0	69
12	Novel approaches to pharmacology-oriented and energy rich organic nitrogen–oxygen systems. Mendeleev Communications, 2015, 25, 399-409.	0.6	67
13	Advanced energetic materials: novel strategies and versatile applications. Mendeleev Communications, 2021, 31, 731-749.	0.6	67
14	<i>O</i> â€TMSâ€Î±,αâ€diphenylâ€(<i>S</i>)â€prolinol Modified with an Ionic Liquid Moiety: A Recoverable Organocatalyst for the Asymmetric Michael Reaction between α,βâ€Enals and Dialkyl Malonates. European Journal of Organic Chemistry, 2009, 2009, 5134-5137.	1.2	65
15	Chiral Ionic Liquids Bearing <i>O</i> â€Silylated α,αâ€Diphenyl (<i>S</i>)―or (<i>R</i>)â€Prolinol Units: Recoverable Organocatalysts for Asymmetric Michael Addition of Nitroalkanes to α,βâ€Enals. European Journal of Organic Chemistry, 2010, 2010, 2927-2933.	1.2	64
16	Supercritical fluids in chemistry. Russian Chemical Reviews, 2020, 89, 1337-1427.	2.5	62
17	Palladium-containing hypercrosslinked polystyrene as an easy to prepare catalyst for Suzuki reaction in water and organic solvents. Reactive and Functional Polymers, 2009, 69, 755-758.	2.0	57
18	α,α-Diarylprolinol-derived chiral ionic liquids: recoverable organocatalysts for the domino reaction between α,Î2-enals and N-protected bydroxylamines. Tetrabedron: Asymmetry, 2010, 21, 2659-2670	1.8	56

#	Article	IF	CITATIONS
19	Tertiary Amine-Derived Ionic Liquid-Supported Squaramide as a Recyclable Organocatalyst for Noncovalent "On Water―Catalysis. ACS Catalysis, 2017, 7, 2981-2989.	5.5	55
20	Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds. Russian Chemical Reviews, 2011, 80, 1067-1113.	2.5	54
21	Pot, atom and step economic (PASE) synthesis of 5-isoxazolyl-5H-chromeno[2,3-b]pyridine scaffold. Mendeleev Communications, 2015, 25, 424-426.	0.6	52
22	Chiral Ionic Liquid/ESIâ€MS Methodology as an Efficient Tool for the Study of Transformations of Supported Organocatalysts: Deactivation Pathways of JÃ,rgensen–Hayashiâ€Type Catalysts in Asymmetric Michael Reactions. Chemistry - A European Journal, 2011, 17, 6109-6117.	1.7	48
23	Recent advances in synthesis of organic nitrogen–oxygen systems for medicine and materials science. Mendeleev Communications, 2017, 27, 535-546.	0.6	48
24	Synthetic Utilization of Polynitroaromatic Compounds. 1. S-Derivatization of 1-Substituted 2,4,6-Trinitrobenzenes with Thiols. Journal of Organic Chemistry, 2000, 65, 8430-8438.	1.7	40
25	Catalytic Asymmetric Azaâ€Dielsâ€Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogenâ€Containing Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 1466-1526.	2.1	40
26	Ionic liquids as substrate-specific recoverable solvents and catalysts of regio-, stereo- and enantioselective organic reactions. Mendeleev Communications, 2010, 20, 63-71.	0.6	38
27	Reactions of carbon acids and 1,3-dipoles in the presence of ionic liquids. Russian Chemical Reviews, 2010, 79, 543-583.	2.5	38
28	Simple Ionic Liquid Supported <i>C</i> ₂ â€Symmetric Bisprolinamides as Recoverable Organocatalysts for the Asymmetric Aldol Reaction in the Presence of Water. European Journal of Organic Chemistry, 2012, 2012, 7129-7134.	1.2	38
29	Supercritical Antisolvent Processing of Nitrocellulose: Downscaling to Nanosize, Reducing Friction Sensitivity and Introducing Burning Rate Catalyst. Nanomaterials, 2019, 9, 1386.	1.9	38
30	The (S)-Proline/Polyelectrolyte System: An Efficient, Heterogeneous, Reusable Catalyst for Direct Asymmetric Aldol Reactions. European Journal of Organic Chemistry, 2006, 2006, 2000-2004.	1.2	37
31	(S)-Threonine/α,α-(S)-diphenylvalinol-derived chiral ionic liquid: an immobilized organocatalyst for asymmetric syn-aldol reactions. Tetrahedron, 2011, 67, 1948-1954.	1.0	37
32	Alkylammonium and Alkylimidazolium Perhaloborates, Phosphates, and Aluminates as Catalysts in the Biginelli Reaction. Russian Journal of Organic Chemistry, 2005, 41, 512-516.	0.3	35
33	The use of new carboranylphosphite ligands in the asymmetric Rh-catalyzed hydrogenation. Catalysis Communications, 2010, 11, 419-421.	1.6	35
34	HMX surface modification with polymers via sc-CO2 antisolvent process: A way to safe and easy-to-handle energetic materials. Chemical Engineering Journal, 2022, 428, 131363.	6.6	34
35	(1 <i>R</i> ,2 <i>R</i>)â€Bis[(<i>S</i>)â€prolinamido]cyclohexane Modified with Ionic Groups: The First <i>C</i> ₂ â€Symmetric Immobilized Organocatalyst for Asymmetric Aldol Reactions in Aqueous Media. European Journal of Organic Chemistry, 2011, 2011, 6128-6133.	1.2	32
36	Tetraalkylammonium and 1,3-Dialkylimidazolium Salts with Fluorinated Anions as Recoverable Phase-Transfer Catalysts in Solid Base-Promoted Cross-Aldol Condensations. European Journal of Organic Chemistry, 2005, 2005, 2822-2827.	1.2	31

#	Article	IF	CITATIONS
37	Asymmetric aldol condensation in an ionic liquid-water system catalyzed by (S)-prolinamide derivatives Russian Chemical Bulletin, 2008, 57, 591-594.	0.4	31
38	Stereodivergent Michael addition of diphenylphosphite to α-nitroalkenes in the presence of squaramide-derived tertiary amines: an enantioselective organocatalytic reaction in supercritical carbon dioxide. Green Chemistry, 2014, 16, 1521.	4.6	30
39	Synthetic Utilization of Polynitroaromatic Compounds. 2. Synthesis of 4,6-Dinitro-1,2-benzisothiazol-3-ones and 4,6-Dinitro-1,2-benzisothiazoles from 2-Benzylthio-4,6-dinitrobenzamides. Journal of Organic Chemistry, 2000, 65, 8439-8443.	1.7	29
40	C2-Symmetric diamines and their derivatives as promising organocatalysts for asymmetric synthesis. Russian Chemical Reviews, 2015, 84, 1077-1099.	2.5	29
41	Chiral Primary Amine Tagged to Ionic Group as Reusable Organocatalyst for Asymmetric Michael Reactions of Câ€Nucleophiles with α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2012, 354, 3078-3086.	2.1	27
42	The use of a new carboranylamidophosphite ligand in the asymmetric Pd-catalysed allylic alkylation in organic solvents and supercritical carbon dioxide. Journal of Organometallic Chemistry, 2009, 694, 3047-3049.	0.8	26
43	Asymmetric organocatalysis: from proline to highly efficient immobilized organocatalysts. Russian Chemical Bulletin, 2012, 61, 1313-1320.	0.4	26
44	(1,2-Diaminoethane-1,2-diyl)bis(N-methylpyridinium) Salts as a Prospective Platform for Designing Recyclable Prolinamide-Based Organocatalysts. Journal of Organic Chemistry, 2015, 80, 9570-9577.	1.7	26
45	Enantioselective addition of carbon acids to $\hat{I}\pm$ -nitroalkenes: the first asymmetric aminocatalytic reaction in liquefied carbon dioxide. Tetrahedron Letters, 2012, 53, 3502-3505.	0.7	25
46	Asymmetric catalytic synthesis of functionalized tetrahydroquinolines in supercritical fluids. Journal of Supercritical Fluids, 2016, 109, 35-42.	1.6	25
47	The Suzuki–Miyaura cross-coupling of bromo- and chloroarenes with arylboronic acids in supercritical carbon dioxide. Mendeleev Communications, 2010, 20, 140-142.	0.6	22
48	Variation in the regioselectivity of levulinic acid bromination in ionic liquids. Tetrahedron Letters, 2010, 51, 545-547.	0.7	22
49	The progress in the chemistry of N-acyliminium ions and their use in stereoselective organic synthesis. Russian Chemical Reviews, 2017, 86, 1-17.	2.5	22
50	C ₂ -Symmetric Chiral Squaramide, Recyclable Organocatalyst for Asymmetric Michael Reactions. Journal of Organic Chemistry, 2019, 84, 4304-4311.	1.7	22
51	Green asymmetric synthesis of Warfarin and Coumachlor in pure water catalyzed by quinoline-derived 1,2-diamines. Green Chemistry, 2018, 20, 754-759.	4.6	21
52	Recoverable Phaseâ€Transfer Catalysts with Fluorinated Anions: Generation and Reactions of Dichlorocarbene and CCl ₃ Anion in the Heterogeneous System KOH(s)/CHCl ₃ / <i>n</i> Bu ₄ NPF ₆ . European Journal of Organic Chemistry, 2008, 2008, 1777-1782.	1.2	20
53	Synthesis of chiral amino acid derivatives in supercritical carbon dioxide using Rh-PipPhos catalyst. Journal of Supercritical Fluids, 2009, 50, 118-120.	1.6	20
54	lonic polymer-supported O-trimethylsilyl-α,α-diphenyl-(S)-prolinols as recoverable organocatalysts for the asymmetric Michael reactions of carbon acids with α,β-enals. Mendeleev Communications, 2011, 21, 146-148.	0.6	19

#	Article	IF	CITATIONS
55	Ionic liquid supported 4-HO-Pro-Val derived organocatalysts for asymmetric aldol reactions in the presence of water. Mendeleev Communications, 2016, 26, 388-390.	0.6	19
56	One-step solvent-free synthesis of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Russian Journal of Organic Chemistry, 2006, 42, 1392-1395.	0.3	18
57	2-Hydroxy-3-[(S)-prolinamido]pinanes as novel bifunctional organocatalysts for asymmetric aldol reactions in aqueous media. Tetrahedron: Asymmetry, 2011, 22, 1320-1324.	1.8	18
58	Asymmetric aldol reactions in ketone/ketone systems catalyzed by ionic liquid-supported C2-symmetrical organocatalyst. Mendeleev Communications, 2015, 25, 168-170.	0.6	18
59	C ₂ -Symmetric pyrrolidine-derived squaramides as recyclable organocatalysts for asymmetric Michael reactions. Organic and Biomolecular Chemistry, 2016, 14, 9751-9759.	1.5	17
60	Prolinamideâ€Derived Ionicâ€Liquidâ€Supported Organocatalyst for Asymmetric Mono―and Bisâ€Aldol Reactions in the Presence of Water. European Journal of Organic Chemistry, 2015, 2015, 5649-5654.	1.2	16
61	Nitration of glycoluril derivatives in liquid carbon dioxide. Mendeleev Communications, 2015, 25, 15-16.	0.6	16
62	Primary Amine Attached to an <i>N</i> â€(Carboxyalkyl)imidazolium Cation: A Recyclable Organocatalyst for the Asymmetric Michael Reaction. European Journal of Organic Chemistry, 2014, 2014, 3808-3813.	1.2	15
63	[1,4]Dithiino[2,3-c:5,6-c']bis[1,2,5]oxadiazole di-N-oxide: synthesis and oxidation to mono- and bis-S-oxides. Mendeleev Communications, 2015, 25, 339-340.	0.6	15
64	Green asymmetric synthesis of tetrahydroquinolines in carbon dioxideÂmedium promoted by lipophilic bifunctional tertiary amine – squaramide organocatalysts. Tetrahedron, 2018, 74, 157-164.	1.0	15
65	Micronization of CL-20 using supercritical and liquefied gases. CrystEngComm, 2020, 22, 7549-7555.	1.3	15
66	conjugate additions of ketones to $\hat{l}\pm$ -nitroalkenes. Tetrahedron: Asymmetry, 2013, 24, 776-779.	1.8	14
67	Asymmetric Michael addition of aldehydes to maleimides in primary amine-based aqueous ionic liquid-supported recyclable catalytic system. Mendeleev Communications, 2017, 27, 473-475.	0.6	14
68	1(R),2(R)-Bis[(S)-prolinamido]cyclohexane/[bmim][BF4] ionic liquid as an efficient catalytic system for direct asymmetric aldol reactions. Mendeleev Communications, 2007, 17, 277-278.	0.6	13
69	Ionic Liquids—Advanced Reaction Media for Organic Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1205-1216.	0.8	13
70	Short and efficient synthesis of 1-(2-oxido-1,2,5-oxadiazol-3-yl)alkyl nitrates by unconventional nitrooxylation of 3-alkyl-1,2,5-oxadiazole 2-oxides. Tetrahedron Letters, 2016, 57, 4027-4030.	0.7	13
71	Stereoselective Synthesis of Tetrahydroquinolines via Asymmetric Domino Reaction Catalyzed by a Recyclable Ionicâ€Liquidâ€Supported Bifunctional Tertiary Amine. European Journal of Organic Chemistry, 2018, 2018, 7000-7008.	1.2	13
72	Alkynylisothiazoles. Russian Chemical Bulletin, 1998, 47, 519-523.	0.4	12

#	Article	IF	CITATIONS
73	Asymmetric allylic alkylation in supercritical carbon dioxide using P*-chiral diamidophosphite ligands. Mendeleev Communications, 2010, 20, 143-144.	0.6	12
74	Synthesis of novel tridentate pyrazole–bipyridine ligands for Co-complexes as redox-couples in dye-sensitized solar cells. Tetrahedron, 2015, 71, 8551-8556.	1.0	12
75	Sustainable Synthesis of Polynitroesters in the Freon Medium and their <i>in Vitro</i> Evaluation as Potential Nitric Oxide Donors. ACS Sustainable Chemistry and Engineering, 2018, 6, 2535-2540.	3.2	12
76	Selective Synthesis of 1,2-Benzisothiazol-3-one-1-Oxide Nitro Derivatives. Synthesis, 2001, 2001, 1659-1664.	1.2	11
77	Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. 2. One-pot synthesis of substituted 2-amino-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyrans in ethanol and ionic liquid [bmim][PF6]. Russian Chemical Bulletin, 2004, 53, 573-579.	0.4	11
78	Reaction of aromatic aldehydes with β-dicarbonyl compounds in a catalytic system: Piperidinium acetate-1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Russian Chemical Bulletin, 2005, 54, 1233-1238.	0.4	11
79	Bis(tetrazolyl)benzenes as ligands in the Suzuki reaction: Promoters or inhibitors?. Russian Chemical Bulletin, 2006, 55, 118-122.	0.4	11
80	Synthesis of nitric acid esters from alcohols in a dinitrogen pentoxide/carbon dioxide liquid system. Mendeleev Communications, 2012, 22, 67-69.	0.6	11
81	Safe and Convenient Synthesis of Primary N-Nitramines in the Freon Media. Synthesis, 2017, 49, 1103-1108.	1.2	11
82	Nitro derivatives of 2,1,3-benzothiadiazole 1-oxides: synthesis, structural study, and NO release. Russian Chemical Bulletin, 2018, 67, 95-101.	0.4	11
83	Asymmetric Michael addition between kojic acid derivatives and unsaturated ketoesters promoted by <i>C</i> ₂ -symmetric organocatalysts. Organic and Biomolecular Chemistry, 2018, 16, 9314-9318.	1.5	11
84	[1,2,5]Oxadiazolo[3,4-d]pyridazine 1,5,6-trioxides: efficient synthesis via the reaction of trifluoroacetic acids and structural characterization. Tetrahedron Letters, 2018, 59, 3143-3146.	0.7	11
85	Alkylation of malonic and acetoacetic esters in an ionic liquid. Mendeleev Communications, 2002, 12, 57-58.	0.6	10
86	Synthesis of α,β-unsaturated esters from dialkoxyphosphoryl esters and aldehydes in the ionic liquid [bmim][PF6]. Mendeleev Communications, 2002, 12, 176-177.	0.6	10
87	Chemical functionalisation of polychloroarenes. Russian Chemical Reviews, 2007, 76, 885-916.	2.5	10
88	The nitrolysis of N,N-dialkylcarboxamides in liquid carbon dioxide. Russian Chemical Bulletin, 2010, 59, 2147-2150.	0.4	10
89	Efficient syntheses of C20-carotene and crocetin (descrocetin) esters promoted by an acidic ionic liquid. Tetrahedron Letters, 2012, 53, 4971-4973.	0.7	10
90	Asymmetric synthesis of 3-prenyl-substituted pyrrolidin-2-ones. Mendeleev Communications, 2016, 26, 471-473.	0.6	10

#	Article	IF	CITATIONS
91	Asymmetric synthesis of warfarin and its analogs catalyzed by <i>C</i> ₂ -symmetric squaramide-based primary diamines. Organic and Biomolecular Chemistry, 2018, 16, 6423-6429.	1.5	10
92	Continuous nitration of alcohols in a Freon flow. Reaction Chemistry and Engineering, 2019, 4, 1303-1308.	1.9	10
93	2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions. Organic and Biomolecular Chemistry, 2021, 19, 1780-1786.	1.5	10
94	Palladium-catalyzed reaction of bromine- and iodine-containing isothiazoles with olefins. Russian Chemical Bulletin, 1998, 47, 517-519.	0.4	9
95	Synthesis of 2,3-Dihydrobenzothiazol-1,1-dioxide and 2,3-Dihydro-1,4-benzothiazin-3-one Nitroderivatives from 2,4-Di- and 2,4,6-Trinitrobenzamides. Synthesis, 2001, 2001, 0300-0304.	1.2	9
96	Cross-coupling of polychlorobenzenes with phenylboronic acid in the presence of [Pd]-imidazolium salts as catalytic systems. Russian Chemical Bulletin, 2007, 56, 1467-1469.	0.4	9
97	Regioselective palladium-catalysed prenylation of CH acids in the presence of diamidophosphite ligands and potassium carbonate. Mendeleev Communications, 2009, 19, 103-105.	0.6	9
98	Pd-catalyzed allylic amination in supercritical carbon dioxide: Synthesis of carborane-containing terpenoids. Journal of Supercritical Fluids, 2010, 54, 218-221.	1.6	9
99	Nitration of carbonic, sulfuric and oxalic acid-derived amides in liquid carbon dioxide. Mendeleev Communications, 2013, 23, 81-83.	0.6	9
100	Carane amino alcohols as organocatalysts in asymmetric aldol reaction of isatin with acetone. Russian Chemical Bulletin, 2017, 66, 293-296.	0.4	9
101	Conjugate Addition of Carbon Acids to β,γ-Unsaturated α-Keto Esters: Product Tautomerism and Applications for Asymmetric Synthesis of Benzo[<i>a</i>]phenazin-5-ol Derivatives. Journal of Organic Chemistry, 2019, 84, 13824-13831.	1.7	9
102	Сhiral and Racemic Fields Concept for Understanding of the Homochirality Origin, Asymmetric Catalysis, Chiral Superstructure Formation from Achiral Molecules, and B-Z DNA Conformational Transition. Symmetry, 2019, 11, 649.	1.1	9
103	Cross-coupling of polychloroarenes with phenylboronic acid and organozinc compounds catalyzed by palladium complexes. Russian Chemical Bulletin, 2005, 54, 970-974.	0.4	8
104	Synthetic Utilization of Polynitro Aromatic Compounds. 5. Multi-Centered Reactivity Pattern in Reactions of 4,6-Dinitro-1,2-benzisothiazoles and -isothiazol-3(2H)-ones with C-, N-, O-, S-, and F-Nucleophiles. Heterocycles, 2006, 68, 2483.	0.4	8
105	Reactions of Î ² -dimethylaminoacrolein aminal and 3-dimethylamino-1,1,3-trimethoxypropane with alkylidenemalononitriles. Mendeleev Communications, 2006, 16, 326-327.	0.6	8
106	Mannich Synthesis of Acetylenic Amino Alcohols in Aqueous Ionic Liquids. Mendeleev Communications, 2012, 22, 317-319.	0.6	8
107	Towards Sustainable Amino Acid Derived Organocatalysts for Asymmetric <i>syn</i> â€Aldol Reactions. European Journal of Organic Chemistry, 2017, 2017, 2540-2544.	1.2	8
108	Bis[1,2,5]oxadiazolo[3,4- c :3',4'- e]pyridazine 4,5-dioxide as a synthetic equivalent of 4,4'-dinitroso-3,3'-bifurazan. Mendeleev Communications, 2017, 27, 448-450.	0.6	8

#	Article	IF	CITATIONS
109	Nitration of aromatics with dinitrogen pentoxide in a liquefied 1,1,1,2-tetrafluoroethane medium. RSC Advances, 2021, 11, 25841-25847.	1.7	8
110	Reactions of polychlorophenyllithium compounds with electrophiles. Russian Chemical Bulletin, 2005, 54, 964-969.	0.4	7
111	Synthesis of N-propargylanabasine derivatives by the mannich reaction. Russian Chemical Bulletin, 2007, 56, 1637-1647.	0.4	7
112	Pd-catalyzed allylation of CH acids under phase-transfer conditions. Russian Chemical Bulletin, 2010, 59, 605-610.	0.4	7
113	Unprecedented acceleration of the domino reaction between methyl 4-hydroxyalk-3-ynoates and amines in ionic liquids. Mendeleev Communications, 2011, 21, 94-96.	0.6	7
114	Acidic ionic liquid-catalyzed homologation of the polyene chain in α,β-enals (polyenals). Tetrahedron, 2011, 67, 173-178.	1.0	7
115	Ru–BINAP-catalyzed asymmetric hydrogenation of keto esters in high pressure carbon dioxide. Mendeleev Communications, 2012, 22, 184-186.	0.6	7
116	Asymmetric Tsuji–Trost substitution in 3-acetoxy-1,3-diphenylpropene under phase-transfer conditions. Mendeleev Communications, 2012, 22, 39-40.	0.6	7
117	Synthesis of thiazole derivatives bearing an incorporated Z-5-aminopent-3-enoic acid fragment. Tetrahedron, 2013, 69, 6975-6980.	1.0	7
118	Recyclable C2-symmetric tertiary amine-squaramide organocatalysts: Design and application to asymmetric synthesis of Î ³ -nitrocarbonyl compounds. Tetrahedron, 2018, 74, 4769-4776.	1.0	7
119	Buchwald ligand-assisted Suzuki cross-coupling of polychlorobenzenes. Mendeleev Communications, 2021, 31, 400-402.	0.6	7
120	Chemical properties of N'-cyanodiazene N-oxides. Reactions involving the nitrile group. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1460-1466.	0.0	6
121	Light-induced synthesis of 3,7-disubstituted bisisothiazolo[4,5-b:4′,5′-e]pyrazines from 3-substituted 4-dibromoamino-5-haloisothiazoles. Russian Chemical Bulletin, 1999, 48, 1339-1340.	0.4	6
122	Synthesis of 5-bromo-4-dibromoamino-3-phenylisothiazole and its light-induced conversion into 3,7-diphenylbisisothiazolo[4,5-b:4′,5′-e]pyrazine. Russian Chemical Bulletin, 2000, 49, 956-957.	0.4	6
123	Nitro derivatives of cyclic sulfoximides of the 1,2-benzoisothiazole series. Russian Chemical Bulletin, 2002, 51, 1549-1555.	0.4	6
124	Reactions of CH-acids with Â,Â-unsaturated aldehydes in ionic liquids. Russian Chemical Bulletin, 2004, 53, 647-651.	0.4	6
125	Synthesis of conjugated polynitriles by the reactions of β-dimethylaminoacrolein aminal and 1-dimethylamino-1,3,3-trimethoxypropane with 2-dicyanomethylene-4,5,5-trimethyl-3-cyano-2,5-dihydrofuran. Mendeleev Communications, 2007, 17, 349-351.	0.6	6
126	Enantioselective synthesis of β-hydroxy ketones from heterocyclic aldehydes in water catalyzed by a recyclable organocatalyst bearing an ionic liquid moiety. Russian Chemical Bulletin, 2009, 58, 1899-1902.	0.4	6

#	Article	IF	CITATIONS
127	Synthesis of cyclopropane-1,1,2,2-tetracarboxylic acid derivatives from aldehydes and CH-acids in the K2CO3/Bun 4NPF6/toluene heterogeneous system. Russian Chemical Bulletin, 2011, 60, 2286-2290.	0.4	6
128	Chiral Ionic Liquid/ESI-MS Methodology as an Efficient Tool for the Study of Transformations of Supported Organocatalysts. Topics in Catalysis, 2013, 56, 923-932.	1.3	6
129	Synthesis and conformations of cross-conjugated polyenes containing heterocyclic moieties with diverse structures. Mendeleev Communications, 2014, 24, 377-379.	0.6	6
130	Unusual behavior of benzofuroxans under ESI MS conditions in negative ion mode. Mendeleev Communications, 2014, 24, 165-166.	0.6	6
131	Palladium-catalyzed allylation of malonic acid derivatives in heterogeneous systems containing ionic liquids. Mendeleev Communications, 2014, 24, 23-25.	0.6	6
132	The orthoester Johnson–Claisen rearrangement of allylic terpenols in the presence of acidic ionic liquid. Journal of Fluorine Chemistry, 2016, 183, 23-29.	0.9	6
133	Homochirality, Stochastic Chiral Reactions, Spontaneous Chiral Ordering of Achiral Molecules, and Similar Chiral Effects. Is there a Physical Basis for these Mirror Symmetry Breaking Phenomena?**. Current Organic Chemistry, 2018, 22, 2029-2054.	0.9	6
134	Asymmetric Conjugate Addition of 3â€Hydroxychromenâ€4â€Ones to Electronâ€Deficient Olefins Catalyzed by Recyclable C ₂ ‣ymmetric Squaramide. Advanced Synthesis and Catalysis, 2022, 364, 426-439.	2.1	6
135	A carbon dioxide-promoted three-component Strecker reaction. Green Chemistry, 2021, 23, 10137-10144.	4.6	6
136	New regiospecific methods for the synthesis of N?-cyanodiazene N-oxides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 2560-2565.	0.0	5
137	Dibromoisocyanuric acid ? A new reagent for the preparation of azo compounds from heterocyclic amines. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1727-1727.	0.0	5
138	Synthesis of linear and angular anthraquinonoisothiazol-3-ones, their S-oxides, and S,S-dioxides. Russian Chemical Bulletin, 2001, 50, 1657-1662.	0.4	5
139	Asymmetric hydrogenation of the CO bond with the recycling of an organometal catalyst deposited on a solid organic polyelectrolyte. Mendeleev Communications, 2007, 17, 20-21.	0.6	5
140	Regio-, stereo-, and enantioselective reactions of carbon acids catalyzed by recoverable organic catalysts bearing ionic liquid moieties. Pure and Applied Chemistry, 2009, 81, 2059-2068.	0.9	5
141	Functionalized N-propargylanabazine derivatives. Russian Chemical Bulletin, 2009, 58, 1921-1926.	0.4	5
142	Synthesis of 2,6-bis(fluoroalkyl)-2,6-dihydroxytetrahydro-2H-pyran-3,5-dicarboxylates from aldehydes and fluorinated β-oxo esters in the presence of ionic liquid-K2CO3 as catalytic system. Russian Journal of Organic Chemistry, 2010, 46, 468-473.	0.3	5
143	Synthesis of nitrocyclopropanedicarboxylic acid derivatives by addition of α-bromonitroalkanes to methylidene malonic, methylidene cyanoacetic or maleic acid derivatives. Russian Chemical Bulletin, 2011, 60, 2279-2285.	0.4	5
144	Tsuji–Trost allylation of CH acids in supercritical carbon dioxide: advantages and problems. Mendeleev Communications, 2013, 23, 84-85.	0.6	5

SERGEI G ZLOTIN

#	Article	IF	CITATIONS
145	Kinetic resolution of racemic (cyclohexyl)(geranyl)acetic acid. Mendeleev Communications, 2014, 24, 257-259.	0.6	5
146	Stereoselective Michael Halogenation Initiated Ring Closure (MHIRC) Synthesis of Spirocyclopropanes from Benzylidenemalononitriles and 3-Arylisoxazol-5(4H)-ones. Synlett, 2016, 27, 2489-2493.	1.0	5
147	Stereospecific diaza-Cope rearrangement as an efficient tool for the synthesis of DPEDA pyridine analogs and related C ₂ -symmetric organocatalysts. Organic and Biomolecular Chemistry, 2017, 15, 7028-7033.	1.5	5
148	High diastereoselective amine-catalyzed Knoevenagel–Michael-cyclization–ring-opening cascade between aldehydes, 3-arylisoxazol-5(4H)-ones and 3-aminocyclohex-2-en-1-ones. Molecular Diversity, 2018, 22, 627-636.	2.1	5
149	Chemical properties ofN-(amidomethy)- andN-(imidomethyl)glycine derivatives 2. Reactions at alkoxycarbonyl and carboxyl groups. Russian Chemical Bulletin, 1996, 45, 1680-1687.	0.4	4
150	Title is missing!. Russian Chemical Bulletin, 2002, 51, 187-188.	0.4	4
151	Alkylation of 2,3,6,11-tetrahydroanthra[2,1-d]isothiazole-3,6,11-trione and its S-oxide. Russian Chemical Bulletin, 2003, 52, 755-758.	0.4	4
152	Synthesis of derivatives of prenylacetic acids by reactions of alkyl malonate, cyanoacetate, and acetoacetate with alkylating reagents in ionic liquids. Russian Chemical Bulletin, 2004, 53, 652-658.	0.4	4
153	Stereoselective synthesis of analogs of natural isoprenoids based on the reaction of alkyl 4-dialkoxyphosphoryl-3-methylbut-2-enoates with aldehydes in ionic liquids and in an imidazolium salt—benzene system. Russian Chemical Bulletin, 2004, 53, 659-664.	0.4	4
154	One-pot synthesis of substituted styrenes from vicinal dibromoalkanes and arylboronic acids. Russian Chemical Bulletin, 2007, 56, 122-129.	0.4	4
155	Reactions of β-dimethylaminoacrolein aminal and 3-dimethylamino-1,1,3-trimethoxypropane with 3-(dicyanomethylidene)indan-1-one and 1,3-bis(dicyanomethylidene)indane. Russian Chemical Bulletin, 2007, 56, 2258-2262.	0.4	4
156	Synthesis of N,N-dialkylnitramines from secondary ammonium nitrates in liquid or supercritical carbon dioxide. Russian Chemical Bulletin, 2009, 58, 2058-2062.	0.4	4
157	Organocatalysis of asymmetric aldol reaction in water: comparison of catalytic properties of (S)-valine and (S)-proline amides. Russian Chemical Bulletin, 2013, 62, 1010-1015.	0.4	4
158	Relative permittivity of monocomponent and binary solutions of N2O5 in liquid CO2 and their activity in nitration of cellulose. Russian Journal of Physical Chemistry B, 2015, 9, 1130-1136.	0.2	4
159	Novel di- and tetra(pyrazolyl)bipyridine ligands and their Co (II)-complexes for electrochemical applications. Tetrahedron, 2016, 72, 7552-7556.	1.0	4
160	Possible Physical Basis of Mirror Symmetry Effect in Racemic Mixtures of Enantiomers: From Wallach's Rule, Nonlinear Effects, B–Z DNA Transition, and Similar Phenomena to Mirror Symmetry Effects of Chiral Objects. Symmetry, 2020, 12, 889.	1.1	4
161	Organocatalytic Asymmetric Double Addition of Kojic Acids to 2â€Nitroallylic Carbonates. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
162	UVâ€Induced Câ^'H Functionalization of Alkanes with NO ₂ in Supercritical Carbon Dioxide. ChemPhotoChem, 2022, 6, .	1.5	4

#	Article	IF	CITATIONS
163	Synthesis of 3,4:7,8:11,12-trifurazano-1,2,5,6,9,10-hexaazacyclododeca-1,3,5,7,9,11-hexaene-1,5,9-trioxide. Mendeleev Communications, 1997, 7, 7.	0.6	3
164	Synthesis of bromine-and iodine-containing perhaloisothiazoles. Russian Chemical Bulletin, 1997, 46, 1792-1794.	0.4	3
165	Unusual scission of 3,7-dichlorobisisothiazolo[4,5-b:4",5"-e]pyrazine by nucleophiles. Russian Chemical Bulletin, 2001, 50, 1287-1290.	0.4	3
166	Unusual oxidative dehydration of vic-[alkyl(aryl)thio]-substituted aromatic (heteroaromatic) carboxamides. Russian Chemical Bulletin, 2004, 53, 916-924.	0.4	3
167	Synthesis of 4-amino-substituted but-2-en-4-olides. Russian Chemical Bulletin, 2005, 54, 2857-2866.	0.4	3
168	New synthesis of ethambutol and related α,β-acetylenic amino alcohols. Pharmaceutical Chemistry Journal, 2013, 46, 730-735.	0.3	3
169	KOH-Promoted Synthesis of Oxirane Functional Derivatives from Diethyl Bromomalonate and Aldehydes under Phase-Transfer Catalysis Conditions. Mendeleev Communications, 2013, 23, 24-25.	0.6	3
170	Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications. Crystallography Reports, 2015, 60, 763-767.	0.1	3
171	Asymmetric Michael reaction between aldehydes and nitroalkanes promoted by pyrrolidine-containing C2-symmetric organocatalysts. Russian Chemical Bulletin, 2019, 68, 1402-1406.	0.4	3
172	Novel C2-symmetric phenylglycine derivatives as organocatalysts of the Michael reaction between nitroalkenes and ketones. Russian Chemical Bulletin, 2021, 70, 885-889.	0.4	3
173	Nitration of Alkenes and Oxiranes with Nitrogen(IV) Oxide in Liquid and Supercritical Carbon Dioxide Media. Doklady Chemistry, 2021, 500, 209-212.	0.2	3
174	Reaction of 1,1-disubstituted hydrazines with bromine in the presence of aryl- and heteroarylnitroso compounds in acid media: A general method for the synthesis of 1-aryl(heteroaryl)-3,3-disubstituted triazene 1-oxides. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1400-1413.	0.0	2
175	Reaction of nitroso compounds with amidophosphates in the presence of dibromoisocyanurate: Regiospecific synthesis of N?-phosphonatodiazene-N-oxides. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 902-913.	0.0	2
176	Synthesis of alkylN-(α-amidomethyl)glycinates from glycine esters, aroylamides, and formaldehyde. Russian Chemical Bulletin, 1994, 43, 1015-1017.	0.4	2
177	MethylN-(benzylsulfonyl)oxamate as a probable intermediate in the synthesis of 4-hydroxy-5-phenyl-3(2H)-isothiazolone 1,1-dioxide from phenylmethanesulfamide and dimethyl oxalate in the presence of bases. Russian Chemical Bulletin, 1999, 48, 394-395.	0.4	2
178	Asymmetric Pd-catalyzed allylic amination of 1,3-diphenylallyl acetate with dipropylamine in ionic and molecular solvents. Russian Chemical Bulletin, 2005, 54, 2558-2561.	0.4	2
179	1,3,4,6-Tetramethyl-2,5-dioxabicyclo-[2.2.2]octane-3,6-diol: An example of a new bicyclic hemiketal. Chemistry of Heterocyclic Compounds, 2006, 42, 591-593.	0.6	2
180	Synthesis of α-nitro derivatives of δ-oxocarboxylic and glutaric acids in heterogeneous catalytic system ionic liquid—KHCO3. Russian Chemical Bulletin, 2007, 56, 1487-1494.	0.4	2

#	Article	IF	CITATIONS
181	Reactions of 2,2-disubstituted 1,1-dicyanoethenes with β-dimethylaminoacrolein aminal and 3-dimethylamino-1,1,3-trimethoxypropane. Russian Chemical Bulletin, 2008, 57, 1671-1675.	0.4	2
182	Synthesis of thiacyanine dyes containing coumarin moieties at benzothiazole rings. Mendeleev Communications, 2013, 23, 212-214.	0.6	2
183	Synthesis, spectral properties, and conformations of nonlinear cross-conjugated polyenes containing pyrane or dihydropyridine fragment. Russian Chemical Bulletin, 2013, 62, 2012-2022.	0.4	2
184	Unusual transformation of 3-alkylfuroxans into 3-(nitrooxyalkyl)furoxans on treatment with a mixture of nitric and sulfuric acids. Russian Chemical Bulletin, 2016, 65, 2901-2906.	0.4	2
185	Novel L-threonine-based ionic liquid supported organocatalyst for asymmetric syn-aldol reaction: activity and recyclability design. Arkivoc, 2017, 2017, 241-249.	0.3	2
186	Proline-Histidine Dipeptide: A Suitable Template for Generating Ion-Tagged Organocatalysts for the Asymmetric Aldol Reaction. Synthesis, 2021, 53, 2702-2712.	1.2	2
187	Suzuki cross-coupling of hexachlorobenzene promoted by the Buchwald ligands. Russian Chemical Bulletin, 2022, 71, 169-172.	0.4	2
188	Use of \$\$^3 J_{^{15} N^{13} C} \$\$ in the conformational analysis of the 2-substituted 7-nitro (15NO2)norbornanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1979, 28, 1183-1187.	0.0	1
189	High-pressure synthesis of tetrazoles from cyanates and organic azides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1982, 31, 567-572.	0.0	1
190	Interconversion of isomeric tetrazole derivatives. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 223-223.	0.0	1
191	5-?-Nitroalkyl- and 5-?,?-dinitroalkyltetrazoles. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 215-216.	0.0	1
192	Synthesis of N?-methoxydiazene N-oxide derivatives of malonate and cyanoacetate esters. Bulletin of the USSR Division of Chemical Science, 1986, 35, 2125-2126.	0.0	1
193	Regiospecific method for the synthesis of N,N?-dialkyldiazene N-oxides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1505-1506.	0.0	1
194	Reaction of 1,1-disubstituted hydrazines with dibromoisocyanurate in the presence of nitrosobenzene. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1526-1528.	0.0	1
195	Formation of O,N-disubstituted hydroxylamines and ketoxime esters in reactions between triazene 1-oxides and bases. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1895-1900.	0.0	1
196	Formation of asymmetric N-hydroxyaryl-N?-aryl(hetaryl)diazenes in the reaction of N-aryl(hetaryl)-N?-phosphoryldiazene-N-oxides with bases. Russian Chemical Bulletin, 1993, 42, 577-579.	0.4	1
197	Synthesis of 3-substituted 4-imino-4,5-dihydro-1,2,3-triazole 1-oxides and 4-amino-1,2,3-triazole 1-oxides. Crystal and molecular structure of 4-imino-5,5-dimethyl-3-phenyl-4,5-dihydro-1,2,3-triazole 1-oxide. Russian Chemical Bulletin, 1993, 42, 711-717.	0.4	1
198	Synthesis ofN-(imidomethyl)glycine esters from alkyl glycinates, imides of dicarboxylic acids, and formaldehyde. Russian Chemical Bulletin, 1995, 44, 1260-1261.	0.4	1

#	Article	IF	CITATIONS
199	Synthesis ofN-(amidomethyl)- andN- (imidomethyl)-?-amino acid esters by reactions of ?-amino acid esters with formaldehyde and amides or imides. Russian Chemical Bulletin, 1996, 45, 1670-1679.	0.4	1
200	Synthesis of functional derivatives ofN-carboxamidomethyl- andN-phthalimidomethyl-a-amino acids and peptides by reaction of amides and nitriles of ?-amino acids with formaldehyde and primary amides or phthalimide. Russian Chemical Bulletin, 1996, 45, 1410-1418.	0.4	1
201	Alkylammonium and Alkylimidazolium Perhaloborates, Phosphates, and Aluminates as Catalysts in the Biginelli Reaction ChemInform, 2005, 36, no.	0.1	1
202	Synthetic Utilization of Polynitroaromatic Compounds: Synthesis of Fluorinated Fused Heterocycles from Polynitroaromatic Compounds. ACS Symposium Series, 2009, , 291-306.	0.5	1
203	Isoprenoid derivatives of N-propargylanabasine: mild hydration of a trisubstituted double bond. Chemistry of Heterocyclic Compounds, 2009, 45, 677-679.	0.6	1
204	Cross-conjugated ï‰,ï‰â€²-bis(dimethylamino) ketones and dinitriles containing a cycloalkane or piperidine fragment: synthesis and study of spectroscopic properties. Russian Chemical Bulletin, 2009, 58, 317-321.	0.4	1
205	Synthesis and properties of cross-conjugated ω,ω′-bis-dimethylamino ketones and dinitriles with N-acetyl- and N-benzylpiperidine cycles. Russian Chemical Bulletin, 2011, 60, 2014-2020.	0.4	1
206	Synthesis of methaprogerol analogs. Russian Chemical Bulletin, 2012, 61, 253-258.	0.4	1
207	Synthesis and stereochemical assignment of geraniol- and nerol-derived Cygerol enantiomers. Tetrahedron: Asymmetry, 2017, 28, 1834-1841.	1.8	1
208	Synthesis and structural investigation of 4,4′-dimethyl-[3,3′-bi(1,2,5-oxadiazole)] 5,5′-dioxide. Russian Chemical Bulletin, 2018, 67, 2044-2048.	0.4	1
209	Reaction of NO2BF4, with olefins in acetic anhydride. 1. Nitration of cyclenes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 2121-2127.	0.0	0
210	Reaction of NO2BF4 with alkenes in acetic anhydride. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 2196-2198.	0.0	0
211	Synthesis and polymerization of unsaturated derivatives of adamantane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1977, 26, 2556-2558.	0.0	0
212	Reaction of nitrosobenzene with 1,1-dialkyldiazenium salts as a new method for the synthesis of 3,3-dialkyltriazene 1-oxides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 2422-2423.	0.0	0
213	The formation of 1-aryl-3,3-disubstituted triazenes in the reaction of 1-acyl-1-alkyl- and 1-alkoxycarbonyl-1-alkylhydrazines with nitrosobenzene. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1990, 39, 1078-1079.	0.0	0
214	Synthesis of N?-phosphinatodiazene N-oxides. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 2096-2103.	0.0	0
215	Reaction of aryldiazonium salts with acetone oxime. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 1495-1496.	0.0	0
216	Synthesis and properties of functional derivatives ofN?-phosphoryl- andN?-phosphonoyldiazeneN-oxides; molecular structure ofN-(2,2-dimethyl-5-nitro-1,3-dioxan-5-yl)-N?-[methoxy(phenyl)phosphoryl]diazeneN-oxide. Russian Chemical Bulletin, 1994, 43, 1220-1226.	0.4	0

SERGEI G ZLOTIN

#	Article	IF	CITATIONS
217	Synthesis and properties ofN?-(phosphorylalkyl)diazeneN-oxides. Russian Chemical Bulletin, 1994, 43, 1227-1230.	0.4	0
218	Chemical properties ofN-(amidomethyl)- andN-(imidomethyl)glycine derivatives. Russian Chemical Bulletin, 1995, 44, 1252-1259.	0.4	0
219	Formation of hexahydro-1,3,5-triazin-2-one and hexahydro-1,3,5-triazine2-thione derivatives in reactions of glycylglycine with paraformaldehyde andN,N?-disubstituted ureas and thioureas. Russian Chemical Bulletin, 1996, 45, 737-738.	0.4	0
220	Synthesis of α,β-Unsaturated Esters from Dialkoxyphosphoryl Esters and Aldehydes in the Ionic Liquid [bmim][PF6]. ChemInform, 2003, 34, no.	0.1	0
221	Alkylation of 2,3,6,11-Tetrahydroanthra[2,1-d]isothiazole-3,6,11-trione and Its S-Oxide ChemInform, 2003, 34, no.	0.1	0
222	Reactions of CH-Acids with ?,?-Unsaturated Aldehydes in Ionic Liquids ChemInform, 2005, 36, no.	0.1	0
223	Unusual Oxidative Dehydration of vic-[Alkyl(aryl)thio]-Substituted Aromatic (Heteroaromatic) Carboxamides ChemInform, 2005, 36, no.	0.1	0
224	Tetraalkylammonium and 1,3-Dialkylimidazolium Salts with Fluorinated Anions as Recoverable Phase-Transfer Catalysts in Solid Base Promoted Cross-Aldol Condensations ChemInform, 2005, 36, no.	0.1	0
225	Protonation and alkylation of cross-conjugated ï‰,ï‰â€™-bis(dimethylamino) ketones (ketocyanines) containing the piperidine ring and the synthesis of the corresponding thiapentacarbocyanine dyes. Russian Chemical Bulletin, 2010, 59, 812-819.	0.4	0
226	Simulation of Ozone and Molecular Oxygen Oxidation of Dinitrogen Tetroxide to Nitric Anhydride. Mendeleev Communications, 2014, 24, 94-95.	0.6	0
227	1,4-cis-Hydrogenation of butyl sorbate in supercritical carbon dioxide. Russian Chemical Bulletin, 2018, 67, 923-926.	0.4	0
228	Buchwald ligand-assisted Suzuki cross-coupling of polychlorobenzenes. Mendeleev Communications, 2021, 31, 400-402.	0.6	0