
Masaya Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3486840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16825-16830.	7.1	473
2	Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLoS ONE, 2012, 7, e52787.	2.5	266
3	Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition. Stem Cell Reports, 2015, 4, 360-373.	4.8	187
4	Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Research, 2013, 23, 70-80.	12.0	177
5	Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord. Stem Cells, 2011, 29, 1983-1994.	3.2	129
6	Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells, 2019, 37, 6-13.	3.2	98
7	BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2. Neurorehabilitation and Neural Repair, 2015, 29, 677-689.	2.9	84
8	Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Scientific Reports, 2016, 6, 30898.	3.3	84
9	Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neuroscience Research, 2016, 113, 37-47.	1.9	53
10	Pathognomonic radiological signs for predicting prognosis in patients with chronic atlantoaxial rotatory fixation. Journal of Neurosurgery: Spine, 2006, 5, 385-391.	1.7	49
11	Management of Chronic Atlantoaxial Rotatory Fixation. Spine, 2012, 37, E278-E285.	2.0	46
12	Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Molecular Brain, 2014, 7, 14.	2.6	45
13	Enhanced Functional Recovery from Spinal Cord Injury in Aged Mice after Stem Cell Transplantation through HGF Induction. Stem Cell Reports, 2017, 8, 509-518.	4.8	43
14	The Amelioration of Pain-Related Behavior in Mice with Chronic Spinal Cord Injury Treated with Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training. Journal of Neurotrauma, 2018, 35, 2561-2571.	3.4	32
15	Remodeling of C2 Facet Deformity Prevents Recurrent Subluxation in Patients With Chronic Atlantoaxial Rotatory Fixation. Spine, 2011, 36, E256-E262.	2.0	30
16	Quantitative CT-based bone strength parameters for the prediction of novel spinal implant stability using resonance frequency analysis: a cadaveric study involving experimental micro-CT and clinical multislice CT. European Radiology Experimental, 2019, 3, 1.	3.4	30
17	Enpp1 is an anti-aging factor that regulates Klotho under phosphate overload conditions. Scientific Reports, 2017, 7, 7786.	3.3	29
18	Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Scientific Reports, 2018, 8, 14406.	3.3	28

Masaya Nakamura

#	Article	IF	CITATIONS
19	Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells, 2021, 10, 2676.	4.1	24
20	A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS ONE, 2018, 13, e0199362.	2.5	22
21	A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Translational Medicine, 2021, 10, 398-413.	3.3	22
22	Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury. Experimental Neurology, 2021, 345, 113834.	4.1	22
23	Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. Npj Regenerative Medicine, 2021, 6, 81.	5.2	20
24	Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. Journal of Bone and Mineral Metabolism, 2021, 39, 372-384.	2.7	19
25	The prospects of regenerative medicine combined with rehabilitative approaches for chronic spinal cord injury animal models. Neural Regeneration Research, 2017, 12, 43.	3.0	19
26	Regenerative Rehabilitation and Stem Cell Therapy Targeting Chronic Spinal Cord Injury: A Review of Preclinical Studies. Cells, 2022, 11, 685.	4.1	18
27	Association of Susceptibility Genes for Adolescent Idiopathic Scoliosis and Intervertebral Disc Degeneration With Adult Spinal Deformity. Spine, 2019, 44, 1623-1629.	2.0	13
28	Feasibility of Targeting Traf2-and-Nck-Interacting Kinase in Synovial Sarcoma. Cancers, 2020, 12, 1258.	3.7	13
29	Laser Resonance Frequency Analysis: A Novel Measurement Approach to Evaluate Acetabular Cup Stability During Surgery. Sensors, 2019, 19, 4876.	3.8	12
30	ALDH2 mutation promotes skeletal muscle atrophy in mice via accumulation of oxidative stress. Bone, 2021, 142, 115739.	2.9	12
31	Direct conversion of osteosarcoma to adipocytes by targeting TNIK. JCI Insight, 2021, 6, .	5.0	12
32	Diabetes Does Not Adversely Affect Neurological Recovery and Reduction of Neck Pain After Posterior Decompression Surgery for Cervical Spondylotic Myelopathy. Spine, 2021, 46, 433-439.	2.0	10
33	Laser resonance frequency analysis of pedicle screw stability: A cadaveric model bone study. Journal of Orthopaedic Research, 2021, 39, 2474-2484.	2.3	8
34	Associations between Clinical Symptoms and Degree of Ossification in Patients with Cervical Ossification of the Posterior Longitudinal Ligament: A Prospective Multi-Institutional Cross-Sectional Study. Journal of Clinical Medicine, 2020, 9, 4055.	2.4	6
35	Does Diabetes Affect the Surgical Outcomes in Cases With Cervical Ossification of the Posterior Longitudinal Ligament? A Multicenter Study From Asia Pacific Spine Study Group. Global Spine Journal, 2023, 13, 353-359.	2.3	6
36	Impact of Diabetes Mellitus on Cervical Spine Surgery for Ossification of the Posterior Longitudinal Ligament. Journal of Clinical Medicine, 2021, 10, 3375.	2.4	5

Masaya Nakamura

#	Article	IF	CITATIONS
37	Imaging Comparison Between Chinese and Japanese Patients With Cervical Ossification of the Posterior Longitudinal Ligament. Spine, 2018, 43, E1376-E1383.	2.0	4
38	Machine Learning-Based Diagnosis in Laser Resonance Frequency Analysis for Implant Stability of Orthopedic Pedicle Screws. Sensors, 2021, 21, 7553.	3.8	4
39	Smad2 and Smad3 expressed in skeletal muscle promote immobilization-induced bone atrophy in mice. Biochemical and Biophysical Research Communications, 2021, 582, 111-117.	2.1	3
40	<scp>3D</scp> imaging of supraspinal inputs to the thoracic and lumbar spinal cord mapped by retrograde tracing and lightâ€sheet microscopy. Journal of Neurochemistry, 0, , .	3.9	3
41	Hao1 Is Not a Pathogenic Factor for Ectopic Ossifications but Functions to Regulate the TCA Cycle In Vivo. Metabolites, 2022, 12, 82.	2.9	1
42	Spontaneous Osseous Fusion after Remodeling Therapy for Chronic Atlantoaxial Rotatory Fixation and Recovery Mechanism of Rotatory Range of Motion of the Cervical Spine. Journal of Clinical Medicine, 2022, 11, 1504.	2.4	1
43	Treadmill Training for Common Marmoset to Strengthen Corticospinal Connections After Thoracic Contusion Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2022, 16, 858562.	3.7	1