Mehdi Ghaemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3486573/publications.pdf

Version: 2024-02-01

35 papers 1,709 citations

304743

22

h-index

395702 33 g-index

36 all docs

36 docs citations

36 times ranked

2056 citing authors

#	Article	IF	CITATIONS
1	NO adsorption on Ni4M (M = Ni, Mo, Sc, and Y) nanoclusters: a DFT study. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	1
2	Adsorptive removal of Hg2+ from aqueous solutions using amino phenyl-pyrazole-functionalized graphene oxide. Carbon Letters, 2020, 30, 493-508.	5.9	11
3	Controllable Pulse Reverse Electrodeposition of Mesoporous Li <i></i> MnO ₂ Nano/Microstructures with Enhanced Electrochemical Performance for Li-lon Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21552-21566.	8.0	10
4	Density functional theory study of the CO adsorption on Ni4M (M = Mo, Sc, and Y) nanoclusters. Computational and Theoretical Chemistry, 2019, 1155, 47-55.	2.5	5
5	Facile pulse elecrodeposition of LixMnO2 nano-structures as high performance cathode materials for lithium ion battery. Electrochimica Acta, 2018, 261, 491-502.	5.2	26
6	Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution. Electrochimica Acta, 2018, 259, 903-915.	5.2	27
7	Synthesis of mesoporous LixMnO2 as a cathode material of Lithium ion battery via one-pot galvanostatic electrodeposition method. Journal of Electroanalytical Chemistry, 2017, 801, 224-234.	3.8	12
8	Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method. Journal of Alloys and Compounds, 2015, 627, 146-152.	5 . 5	68
9	Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technology, 2015, 274, 426-430.	4.2	45
10	Ethylene glycol-assisted hydrothermal synthesis and characterization of bow-tie-like lithium iron phosphate nanocrystals for lithium-ion batteries. Journal of Power Sources, 2015, 284, 339-348.	7.8	27
11	LiFePO 4 /C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance. Journal of Alloys and Compounds, 2015, 643, 40-48.	5.5	16
12	Electrochemical preparation of \hat{l} ±-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 1569-1584.	2.5	142
13	Low-temperature electrochemical synthesis and characterization of ultrafine Y(OH)3 and Y2O3 nanoparticles. Journal of Rare Earths, 2012, 30, 236-240.	4.8	36
14	La2O3 Nanoplates Prepared by Heat-Treatment of Electrochemically Grown La(OH)3 Nanocapsules from Nitrate Medium. Journal of the Electrochemical Society, 2011, 158, E136.	2.9	25
15	A novel lanthanum hydroxide nanostructure prepared by cathodic electrodeposition. Materials Letters, 2011, 65, 1466-1468.	2.6	53
16	Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Materials Letters, 2011, 65, 2545-2548.	2.6	35
17	Synthesis, characterization, and electrochemical properties of ultrafine \hat{I}^2 -Ni(OH)2 nanoparticles. International Journal of Hydrogen Energy, 2011, 36, 8674-8679.	7.1	222
18	Yttrium Oxide Nanoparticles Prepared by Heat Treatment of Cathodically Grown Yttrium Hydroxide. ISRN Ceramics, 2011, 2011, 1-6.	0.2	21

#	Article	IF	Citations
19	Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor. Journal of Alloys and Compounds, 2010, 493, 175-178.	5.5	27
20	Synthesis of Y[sub 2]O[sub 3] Nanospheres via Heat-Treatment of Cathodically Grown Y(OH)[sub 3] in Chloride Medium. Journal of the Electrochemical Society, 2010, 157, D519.	2.9	37
21	Influence of the solution pH on the nanostructural, and electrochemical performance of electrolytic manganese dioxide. Journal of Alloys and Compounds, 2009, 481, 446-449.	5. 5	14
22	Nano-structural tailoring of manganese dioxide by using pulse current electrodeposition. Solid State lonics, 2008, 179, 2278-2283.	2.7	32
23	A study around the improvement of electrochemical activity of MnO2 as cathodic material in alkaline batteries. Electrochimica Acta, 2008, 53, 3250-3256.	5.2	14
24	Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochimica Acta, 2008, 53, 4607-4614.	5.2	196
25	Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochimica Acta, 2007, 52, 2806-2814.	5.2	191
26	Influence of the nonionic surfactant Triton X-100 on electrocrystallization and electrochemical performance of lead dioxide electrode. Journal of Power Sources, 2006, 157, 550-562.	7.8	31
27	Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO2. Journal of Power Sources, 2005, 141, 340-350.	7.8	63
28	Electrolytic MnO2 via non-isothermal electrode heating: a promising approach for optimizing performances of electroactive materials. Journal of Power Sources, 2004, 125, 256-266.	7.8	15
29	What is the limiting factor of the cycle-life of Zn–polyaniline rechargeable batteries?. Journal of Power Sources, 2004, 132, 296-301.	7.8	57
30	New advances on bipolar rechargeable alkaline manganese dioxide–zinc batteries. Journal of Power Sources, 2003, 117, 233-241.	7.8	46
31	Effects of direct and pulse current on electrodeposition of manganese dioxide. Journal of Power Sources, 2002, 111, 248-254.	7.8	81
32	Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide. Journal of Power Sources, 2001, 102, 29-34.	7.8	40
33	Test cells for the investigation of battery reactions at high internal pressures. Journal of Applied Electrochemistry, 1999, 29, 421-428.	2.9	0
34	Usage of biomass gas for fuel cells by the SIR process. Journal of Power Sources, 1998, 71, 226-230.	7.8	81
35	Laboratory Production of Components for Rechargeable Bipolar Manganese Dioxide Zinc Batteries. , 1995, , 33-40.		2