Scott T Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3486007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dark matter halo concentrations in the <i>Wilkinson Microwave Anisotropy Probe</i> year 5 cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 390, L64-L68.	3.3	740
2	Revisiting the cosmic cooling crisis. Monthly Notices of the Royal Astronomical Society, 2001, 326, 1228-1234.	4.4	219
3	Galaxieszzziıtergalactic medium interaction calculation �zïչ½zi½½ I. Galaxy formation as a function of la environment. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1773-1794.	arge-scale	216
4	The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1088-1106.	4.4	178
5	The Hydrangea simulations: galaxy formation in and around massive clusters. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4186-4208.	4.4	167
6	The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45. Astrophysical Journal, 2006, 646, L13-L16.	4.5	148
7	Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	135
8	The XMM Cluster Survey: optical analysis methodology and the first data release. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1024-1052.	4.4	124
9	The effect of cooling and preheating on the X-ray properties of clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2002, 336, 527-540.	4.4	123
10	Hydrodynamical simulations of the Sunyaev-Zel'dovich effect: cluster scaling relations and X-ray properties. Monthly Notices of the Royal Astronomical Society, 2004, 348, 1401-1408.	4.4	110
11	Cosmological simulations of the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2004, 355, 1091-1104.	4.4	105
12	The redshift evolution of massive galaxy clusters in the MACSIS simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 213-233.	4.4	96
13	The Tiered Radio Extragalactic Continuum Simulation (T-RECS). Monthly Notices of the Royal Astronomical Society, 2019, 482, 2-19.	4.4	78
14	The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3361-3378.	4.4	75
15	Sunyaev-Zel'dovich clusters in Millennium gas simulations. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1999-2023.	4.4	70
16	The connection between mass, environment, and slow rotation in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4327-4345.	4.4	65
17	nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	4.4	63
18	The Impact of Cooling and Preheating on the Sunyaev-Zeldovich Effect. Astrophysical Journal, 2001, 561, L15-L18.	4.5	52

SCOTT T KAY

#	Article	IF	CITATIONS
19	Cosmological simulations of galaxy clusters with feedback from active galactic nuclei: profiles and scaling relations. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1774-1796.	4.4	48
20	Disruption of satellite galaxies in simulated groups and clusters: the roles of accretion time, baryons, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2287-2311.	4.4	47
21	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	4.4	45
22	Localized massive halo properties in bahamas and MACSIS simulations: scalings, lognormality, and covariance. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2618-2632.	4.4	40
23	CCCP and MENeaCS: (updated) weak-lensing masses for 100 galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4684-4703.	4.4	36
24	The intracluster light as a tracer of the total matter density distribution: a view from simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1859-1864.	4.4	34
25	The Cluster-EAGLE project: velocity bias and the velocity dispersion–mass relation of cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3746-3759.	4.4	33
26	An application of machine learning techniques to galaxy cluster mass estimation using the MACSIS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1526-1537.	4.4	27
27	Hydrostatic mass estimates of massive galaxy clusters: a study with varying hydrodynamics flavours and non-thermal pressure support. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1622-1642.	4.4	22
28	Characterizing hydrostatic mass bias with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 506, 2533-2550.	4.4	22
29	Stellar splashback: the edge of the intracluster light. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4181-4192.	4.4	22
30	The Sunyaev–Zel'dovich temperature of the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2110-2114.	4.4	19
31	Relativistic SZ temperature scaling relations of groups and clusters derived from the BAHAMAS and MACSIS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3274-3292.	4.4	18
32	Is there enough star formation in simulated protoclusters?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1803-1822.	4.4	17
33	Constraining the inner density slope of massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4717-4733.	4.4	15
34	Galaxies with monstrous black holes in galaxy cluster environments. Monthly Notices of the Royal Astronomical Society, 2019, 485, 396-407.	4.4	14
35	The Cluster-EAGLE project: a comparison of dynamical mass estimators using simulated clusters. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3308-3325.	4.4	14
36	Simulated X-ray cluster temperature maps. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1246-1252.	4.4	12

SCOTT T KAY

#	Article	IF	CITATIONS
37	A parametric physical model for the intracluster medium and its use in joint SZ/X-ray analyses of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2011, 410, 341-358.	4.4	12
38	Supercluster simulations: impact of baryons on the matter power spectrum and weak lensing forecasts for Super-CLASS. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3173-3186.	4.4	9
39	The signal of decaying dark matter with hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4071-4089.	4.4	9
40	SuperCLASS – III. Weak lensing from radio and optical observations in Data Release 1. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1737-1759.	4.4	8
41	The relationship between substructure in 2D X-ray surface brightness images and weak-lensing mass maps of galaxy clusters: a simulation study. Monthly Notices of the Royal Astronomical Society, 2009, 400, 705-730.	4.4	7
42	Redshift evolution of the hot intracluster gas metallicity in the C-EAGLE cluster simulations. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1606-1622.	4.4	7
43	TheXMMCluster Survey: the halo occupation number of BOSS galaxies in X-ray clusters. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1929-1943.	4.4	6
44	Is the molecular KS relationship universal down to low metallicities?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4146-4165.	4.4	5
45	SuperCLASS – I. The super cluster assisted shear survey: Project overview and data release 1. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1706-1723.	4.4	3
46	The evolution of the luminosity function faint end of cluster galaxies in the Cluster-EAGLE simulation. Proceedings of the International Astronomical Union, 2018, 14, 495-497.	0.0	0