
## Andrew J Logsdail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485786/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis<br>Today, 2022, 384-386, 197-208.                                                                                                                                                             | 4.4  | 13        |
| 2  | Solid-State Structural Properties of Alloxazine Determined from Powder XRD Data in Conjunction<br>with DFT-D Calculations and Solid-State NMR Spectroscopy: Unraveling the Tautomeric Identity and<br>Pathways for Tautomeric Interconversion. Crystal Growth and Design, 2022, 22, 524-534. | 3.0  | 8         |
| 3  | Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science and Technology, 2022, 12, 843-854.                                                                                                                                      | 4.1  | 12        |
| 4  | Materials and Molecular Modeling at the Exascale. Computing in Science and Engineering, 2022, 24, 36-45.                                                                                                                                                                                     | 1.2  | 7         |
| 5  | Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces.<br>Communications Materials, 2022, 3, .                                                                                                                                                       | 6.9  | 10        |
| 6  | A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of <scp>l</scp> -tyrosine. Chemical Science, 2022, 13, 5277-5288.                                         | 7.4  | 15        |
| 7  | A computational study of direct CO <sub>2</sub> hydrogenation to methanol on Pd surfaces. Physical<br>Chemistry Chemical Physics, 2022, 24, 9360-9373.                                                                                                                                       | 2.8  | 7         |
| 8  | Heterogeneous Trimetallic Nanoparticles as Catalysts. Chemical Reviews, 2022, 122, 6795-6849.                                                                                                                                                                                                | 47.7 | 61        |
| 9  | The Critical Role of βPdZn Alloy in Pd/ZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol. ACS Catalysis, 2022, 12, 5371-5379.                                                                                                                                                | 11.2 | 23        |
| 10 | A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions, 2021, 229, 108-130.                                                                                                               | 3.2  | 5         |
| 11 | Tuning the transition barrier of H <sub>2</sub> dissociation in the hydrogenation of CO <sub>2</sub> to formic acid on Ti-doped Sn <sub>2</sub> O <sub>4</sub> clusters. Physical Chemistry Chemical Physics, 2021, 23, 204-210.                                                             | 2.8  | 6         |
| 12 | QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Physical Chemistry<br>Chemical Physics, 2021, 23, 17634-17644.                                                                                                                                                    | 2.8  | 11        |
| 13 | A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical<br>Chemistry Chemical Physics, 2021, 23, 14649-14661.                                                                                                                                        | 2.8  | 5         |
| 14 | QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y. Physical Chemistry Chemical Physics, 2021, 23, 2088-2096.                                                                                                                                                        | 2.8  | 7         |
| 15 | A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics, 2021, 23, 21437-21469.                                                                                                                                                 | 2.8  | 8         |
| 16 | Polymorphism in a Multicomponent Crystal System of Trimesic Acid and <i>t</i> -Butylamine. Crystal<br>Growth and Design, 2020, 20, 5736-5744.                                                                                                                                                | 3.0  | 9         |
| 17 | Mechanistic Insight into the Framework Methylation of H-ZSM-5 for Varying Methanol Loadings and<br>Si/Al Ratios Using First-Principles Molecular Dynamics Simulations. ACS Catalysis, 2020, 10, 8904-8915.                                                                                   | 11.2 | 36        |
| 18 | NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.                                                                                                                                                                                                           | 3.0  | 425       |

ANDREW J LOGSDAIL

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science, 2020, 11, 6805-6814.                                                                                                                                                                                  | 7.4  | 21        |
| 20 | Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.                                                                                                                                                             | 47.7 | 275       |
| 21 | Polymorphism of l â€Tryptophan. Angewandte Chemie, 2019, 131, 18964-18968.                                                                                                                                                                                                           | 2.0  | 5         |
| 22 | Polymorphism of l â€Tryptophan. Angewandte Chemie - International Edition, 2019, 58, 18788-18792.                                                                                                                                                                                    | 13.8 | 21        |
| 23 | Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5.<br>Physical Chemistry Chemical Physics, 2019, 21, 2639-2650.                                                                                                                           | 2.8  | 21        |
| 24 | Main-group test set for materials science and engineering with user-friendly graphical tools for<br>error analysis: systematic benchmark of the numerical and intrinsic errors in state-of-the-art<br>electronic-structure approximations. New Journal of Physics, 2019, 21, 013025. | 2.9  | 15        |
| 25 | Hybrid-DFT Modeling of Lattice and Surface Vacancies in MnO. Journal of Physical Chemistry C, 2019, 123, 8133-8144.                                                                                                                                                                  | 3.1  | 10        |
| 26 | Hydride Pinning Pathway in the Hydrogenation of CO <sub>2</sub> to Formic Acid on Dimeric Tin<br>Dioxide. ChemPhysChem, 2019, 20, 680-686.                                                                                                                                           | 2.1  | 6         |
| 27 | Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. Journal of Chemical Theory and Computation, 2019, 15, 1317-1328.                                                                                                                              | 5.3  | 46        |
| 28 | DFT-Computed Trends in the Properties of Bimetallic Precious Metal Nanoparticles with Core@Shell Segregation. Journal of Physical Chemistry C, 2018, 122, 5721-5730.                                                                                                                 | 3.1  | 19        |
| 29 | Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 â^ 5, 147) and monometallic Au and Ag low-energy surfaces. European Physical Journal B, 2018, 91, 1.                                                                                          | 1.5  | 1         |
| 30 | Highlights from Faraday Discussion on Designing Nanoparticle Systems for Catalysis, London, UK, May<br>2018. Chemical Communications, 2018, 54, 9385-9393.                                                                                                                           | 4.1  | 2         |
| 31 | Deep vs shallow nature of oxygen vacancies and consequent <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>n</mml:mi>-type carrier<br/>concentrations in transparent conducting oxides. Physical Review Materials, 2018, 2, .</mml:math<br>                    | 2.4  | 73        |
| 32 | Magnetic coupling constants for MnO as calculated using hybrid density functional theory. Chemical<br>Physics Letters, 2017, 690, 47-53.                                                                                                                                             | 2.6  | 5         |
| 33 | Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28648-28660.                                                                                                                                                     | 2.8  | 11        |
| 34 | Controlling Structural Transitions in AuAg Nanoparticles through Precise Compositional Design.<br>Journal of Physical Chemistry Letters, 2016, 7, 4414-4419.                                                                                                                         | 4.6  | 15        |
| 35 | Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts. Faraday Discussions, 2016, 188, 235-255.                                                                                                                                                       | 3.2  | 29        |
| 36 | Morphological Features and Band Bending at Nonpolar Surfaces of ZnO. Journal of Physical<br>Chemistry C, 2015, 119, 11598-11611.                                                                                                                                                     | 3.1  | 33        |

ANDREW J LOGSDAIL

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol.<br>ACS Catalysis, 2015, 5, 4377-4384.                                                                   | 11.2 | 45        |
| 38 | Polymorph Engineering of TiO <sub>2</sub> : Demonstrating How Absolute Reference Potentials Are<br>Determined by Local Coordination. Chemistry of Materials, 2015, 27, 3844-3851.                          | 6.7  | 113       |
| 39 | Influence of Composition and Chemical Arrangement on the Kinetic Stability of 147-Atom Au–Ag<br>Bimetallic Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 23685-23697.                          | 3.1  | 29        |
| 40 | Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Surface Science, 2015, 642, 58-65.                  | 1.9  | 18        |
| 41 | Understanding the Thermal Stability of Silver Nanoparticles Embedded in a-Si. Journal of Physical Chemistry C, 2015, 119, 23767-23773.                                                                     | 3.1  | 16        |
| 42 | From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks. Inorganics, 2014, 2, 248-263.                                                                                                     | 2.7  | 10        |
| 43 | Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.<br>Journal of Chemical Physics, 2014, 141, 024105.                                                          | 3.0  | 38        |
| 44 | Designer Titania-Supported Au–Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production.<br>ACS Nano, 2014, 8, 3490-3497.                                                                          | 14.6 | 279       |
| 45 | Double bubbles: a new structural motif for enhanced electron–hole separation in solids. Physical<br>Chemistry Chemical Physics, 2014, 16, 21098-21105.                                                     | 2.8  | 11        |
| 46 | Segregation effects on the properties of (AuAg) <sub>147</sub> . Physical Chemistry Chemical Physics, 2014, 16, 21049-21061.                                                                               | 2.8  | 37        |
| 47 | Bulk ionization potentials and band alignments from three-dimensional periodic calculations as demonstrated on rocksalt oxides. Physical Review B, 2014, 90, .                                             | 3.2  | 33        |
| 48 | Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12, 798-801.                                                                                                                            | 27.5 | 1,924     |
| 49 | Improving the Adsorption of Au Atoms and Nanoparticles on Graphite via Li Intercalation. Journal of Physical Chemistry C, 2013, 117, 22683-22695.                                                          | 3.1  | 4         |
| 50 | Faceting preferences for AuN and PdN nanoclusters with high-symmetry motifs. Physical Chemistry Chemical Physics, 2013, 15, 8392.                                                                          | 2.8  | 10        |
| 51 | A Selective Blocking Method To Control the Overgrowth of Pt on Au Nanorods. Journal of the<br>American Chemical Society, 2013, 135, 6554-6561.                                                             | 13.7 | 76        |
| 52 | Atomic Cluster Structure Identification Using Aberration-corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2012, 18, 534-535.                                             | 0.4  | 0         |
| 53 | Development and optimization of a novel genetic algorithm for identifying nanoclusters from<br>scanning transmission electron microscopy images. Journal of Computational Chemistry, 2012, 33,<br>391-400. | 3.3  | 15        |
| 54 | Overgrowth of Rhodium on Gold Nanorods. Journal of Physical Chemistry C, 2012, 116, 10312-10317.                                                                                                           | 3.1  | 29        |

| #  | Article                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC<br>Advances, 2012, 2, 5863. | 3.6 | 17        |

## Predicting the Optical Properties of Coreâ $\in$ "Shell and Janus Segregated Auâ $\in$ "M Nanoparticles (M = Ag,) Tj ETQq0 9.0 rgBT /Qyerlock 10 9.2 rgBT /Qyerl

| 57 | Dopant-induced 2D–3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom<br>Au–Ag nanoalloys. Nanoscale, 2012, 4, 1109-1115.                | 5.6 | 93 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 58 | Interaction of Au16 Nanocluster with Defects in Supporting Graphite: A Density-Functional Study.<br>Journal of Physical Chemistry C, 2011, 115, 15240-15250.          | 3.1 | 23 |
| 59 | Theoretical and Experimental Studies of the Optical Properties of Conjoined Goldâ^'Palladium<br>Nanospheres. Journal of Physical Chemistry C, 2010, 114, 21247-21251. | 3.1 | 14 |
| 60 | Structures and Stabilities of Platinum–Gold Nanoclusters. Journal of Computational and Theoretical<br>Nanoscience, 2009, 6, 857-866.                                  | 0.4 | 44 |