Sooryanarayana Varambally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485645/publications.pdf

Version: 2024-02-01

143 papers

35,692 citations

67 h-index 9589 142 g-index

156 all docs

156 docs citations

156 times ranked 36920 citing authors

#	Article	IF	Citations
1	UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 2017, 19, 649-658.	5.3	4,166
2	Recurrent Fusion of <i>TMPRSS2</i> and ETS Transcription Factor Genes in Prostate Cancer. Science, 2005, 310, 644-648.	12.6	3,541
3	The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419, 624-629.	27.8	2,411
4	Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457, 910-914.	27.8	1,944
5	Oncomine 3.0: Genes, Pathways, and Networks in a Collection of 18,000 Cancer Gene Expression Profiles. Neoplasia, 2007, 9, 166-180.	5. 3	1,847
6	Delineation of prognostic biomarkers in prostate cancer. Nature, 2001, 412, 822-826.	27.8	1,551
7	EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11606-11611.	7.1	1,482
8	Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nature Medicine, 2016, 22, 298-305.	30.7	1,193
9	Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science, 2008, 322, 1695-1699.	12.6	995
10	Androgen-Independent Prostate Cancer Is a Heterogeneous Group of Diseases. Cancer Research, 2004, 64, 9209-9216.	0.9	816
11	Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 2007, 448, 595-599.	27.8	743
12	An Integrated Network of Androgen Receptor, Polycomb, and TMPRSS2-ERG Gene Fusions in Prostate Cancer Progression. Cancer Cell, 2010, 17, 443-454.	16.8	743
13	Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell, 2005, 8, 393-406.	16.8	731
14	UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.	5.3	666
15	Role of the TMPRSS2-ERG Gene Fusion in Prostate Cancer. Neoplasia, 2008, 10, 177-IN9.	5.3	608
16	Autoantibody Signatures in Prostate Cancer. New England Journal of Medicine, 2005, 353, 1224-1235.	27.0	581
17	$\hat{l}\pm$ -Methylacyl Coenzyme A Racemase as a Tissue Biomarker for Prostate Cancer. JAMA - Journal of the American Medical Association, 2002, 287, 1662.	7.4	565
18	Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 2008, 27, 7274-7284.	5.9	526

#	Article	IF	Citations
19	Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Medicine, 2010, 16, 793-798.	30.7	436
20	Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer. Cancer Cell, 2011, 19, 664-678.	16.8	397
21	Probabilistic model of the human protein-protein interaction network. Nature Biotechnology, 2005, 23, 951-959.	17.5	380
22	Mechanisms of Enhanced Radiation Response following Epidermal Growth Factor Receptor Signaling Inhibition by Erlotinib (Tarceva). Cancer Research, 2005, 65, 3328-3335.	0.9	359
23	Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nature Communications, 2019, 10, 5679.	12.8	358
24	Induced Chromosomal Proximity and Gene Fusions in Prostate Cancer. Science, 2009, 326, 1230-1230.	12.6	334
25	JAGGED1 Expression Is Associated with Prostate Cancer Metastasis and Recurrence. Cancer Research, 2004, 64, 6854-6857.	0.9	310
26	Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 2016, 17, 95-103.	14.5	310
27	A Polycomb Repression Signature in Metastatic Prostate Cancer Predicts Cancer Outcome. Cancer Research, 2007, 67, 10657-10663.	0.9	308
28	Antibody-Based Detection of ERG Rearrangement-Positive Prostate Cancer. Neoplasia, 2010, 12, 590-IN21.	5.3	305
29	The Role of SPINK1 in ETS Rearrangement-Negative Prostate Cancers. Cancer Cell, 2008, 13, 519-528.	16.8	303
30	Identification of GATA3 as a Breast Cancer Prognostic Marker by Global Gene Expression Meta-analysis. Cancer Research, 2005, 65, 11259-11264.	0.9	272
31	Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 Gene Fusions in Prostate Cancer. Cancer Research, 2008, 68, 73-80.	0.9	244
32	Integrative Genomics Analysis Reveals Silencing of \hat{l}^2 -Adrenergic Signaling by Polycomb in Prostate Cancer. Cancer Cell, 2007, 12, 419-431.	16.8	204
33	Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. Journal of Experimental Medicine, 2006, 203, 203-213.	8.5	199
34	Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell, 2011, 20, 187-199.	16.8	191
35	Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 2018, 65, 104-118.	3.6	172
36	Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19488-19493.	7.1	171

#	Article	IF	Citations
37	C5a-Induced Gene Expression in Human Umbilical Vein Endothelial Cells. American Journal of Pathology, 2004, 164, 849-859.	3.8	152
38	Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer. Cancer Research, 2004, 64, 3814-3822.	0.9	145
39	AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10284-10289.	7.1	140
40	Therapeutic Targeting of SPINK1-Positive Prostate Cancer. Science Translational Medicine, 2011, 3, 72ra17.	12.4	140
41	A Fluorescence <i>In situ</i> Hybridization Screen for E26 Transformation–Specific Aberrations: Identification of DDX5-ETV4 Fusion Protein in Prostate Cancer. Cancer Research, 2008, 68, 7629-7637.	0.9	139
42	EZH2-Targeted Therapies in Cancer: Hype or a Reality. Cancer Research, 2020, 80, 5449-5458.	0.9	139
43	Changes in Differential Gene Expression because of Warm Ischemia Time of Radical Prostatectomy Specimens. American Journal of Pathology, 2002, 161, 1743-1748.	3.8	138
44	Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood, 2011, 117, 6172-6183.	1.4	132
45	Characterization of the EZH2-MMSET Histone Methyltransferase Regulatory Axis in Cancer. Molecular Cell, 2013, 49, 80-93.	9.7	130
46	Genomic and Epigenomic Alterations in Cancer. American Journal of Pathology, 2016, 186, 1724-1735.	3.8	130
47	TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nature Communications, 2014, 5, 4527.	12.8	129
48	The Role of Metastasis-Associated Protein 1 in Prostate Cancer Progression. Cancer Research, 2004, 64, 825-829.	0.9	126
49	Molecular Concepts Analysis Links Tumors, Pathways, Mechanisms, and Drugs. Neoplasia, 2007, 9, 443-IN9.	5. 3	124
50	α-Methylacyl-CoA Racemase: Expression Levels of this Novel Cancer Biomarker Depend on Tumor Differentiation. American Journal of Pathology, 2002, 161, 841-848.	3.8	121
51	Natural antibodies sustain differentiation and maturation of human dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14210-14215.	7.1	100
52	The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene, 2011, 30, 4339-4349.	5.9	95
53	Characterization of <i>KRAS</i> Rearrangements in Metastatic Prostate Cancer. Cancer Discovery, 2011, 1, 35-43.	9.4	91
54	Defining Aggressive Prostate Cancer Using a 12-Gene Model. Neoplasia, 2006, 8, 59-68.	5. 3	90

#	Article	IF	Citations
55	Molecular Cross-talk between the TRAIL and Interferon Signaling Pathways. Journal of Biological Chemistry, 2002, 277, 575-585.	3.4	89
56	Golgi Protein GOLM1 Is a Tissue and Urine Biomarker of Prostate Cancer. Neoplasia, 2008, 10, 1285-IN35.	5. 3	89
57	The Polycomb Group Protein EZH2 Impairs DNA Repair in Breast Epithelial Cells. Neoplasia, 2005, 7, 1011-1019.	5. 3	86
58	Autoantibody Profiles Reveal Ubiquilin 1 as a Humoral Immune Response Target in Lung Adenocarcinoma. Cancer Research, 2007, 67, 3461-3467.	0.9	86
59	ADAM15 Disintegrin Is Associated with Aggressive Prostate and Breast Cancer Disease. Neoplasia, 2006, 8, 319-329.	5 . 3	85
60	Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. Cancer Cell, 2017, 31, 532-548.e7.	16.8	85
61	The miR-124-Prolyl Hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget, 2014, 5, 6654-6669.	1.8	82
62	Role and regulation of coordinately expressed <i>de novo</i> purine biosynthetic enzymes <i>PPAT</i> and <i>PAICS</i> ii>in lung cancer. Oncotarget, 2015, 6, 23445-23461.	1.8	80
63	Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways. Nature Communications, 2022, 13, 2669.	12.8	78
64	Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure. Laboratory Investigation, 2019, 99, 371-386.	3.7	77
65	RHAMM (CD168) Is Overexpressed at the Protein Level and May Constitute an Immunogenic Antigen in Advanced Prostate Cancer Disease. Neoplasia, 2009, 11, 956-963.	5. 3	76
66	Inhibition of Hedgehog signaling reprograms the dysfunctional immune microenvironment in breast cancer. Oncolmmunology, 2019, 8, 1548241.	4.6	76
67	The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene, 2010, 29, 5370-5380.	5.9	75
68	MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene, 2016, 35, 6330-6340.	5.9	74
69	The kinase activity of the Ser/Thr kinase BUB1 promotes TGF- \hat{l}^2 signaling. Science Signaling, 2015, 8, ra1.	3.6	72
70	Histone Methyltransferase EZH2: A Therapeutic Target for Ovarian Cancer. Molecular Cancer Therapeutics, 2018, 17, 591-602.	4.1	71
71	Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells. Blood, 2012, 119, 1274-1282.	1.4	70
72	An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer. Nature Biotechnology, 2009, 27, 1005-1011.	17.5	69

#	Article	IF	Citations
73	Role of epidermal growth factor receptor degradation in gemcitabine-mediated cytotoxicity. Oncogene, 2007, 26, 3431-3439.	5.9	66
74	Ferritin Light Chain Confers Protection Against Sepsis-Induced Inflammation and Organ Injury. Frontiers in Immunology, 2019, 10, 131.	4.8	64
75	Inhibition of CCN6 (Wnt-1-Induced Signaling Protein 3) Down-Regulates E-Cadherin in the Breast Epithelium through Induction of Snail and ZEB1. American Journal of Pathology, 2008, 172, 893-904.	3.8	60
76	Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression. Neoplasia, 2012, 14, 905-IN8.	5.3	59
77	Proteomic Interrogation of Androgen Action in Prostate Cancer Cells Reveals Roles of Aminoacyl tRNA Synthetases. PLoS ONE, 2009, 4, e7075.	2.5	54
78	The Unfolded Protein Response Modulates Toxicity of the Expanded Glutamine Androgen Receptor*. Journal of Biological Chemistry, 2005, 280, 21264-21271.	3.4	53
79	Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Letters, 2020, 470, 134-140.	7.2	53
80	α-Methylacyl-CoA Racemase Protein Expression Is Associated with the Degree of Differentiation in Breast Cancer Using Quantitative Image Analysis. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1418-1423.	2.5	51
81	miR-34a Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression. Molecular Cancer Research, 2018, 16, 1125-1137.	3.4	51
82	A Role for De Novo Purine Metabolic Enzyme PAICS in Bladder Cancer Progression. Neoplasia, 2018, 20, 894-904.	5.3	50
83	Selection and cloning of poly(rC)-binding protein 2 and Raf kinase inhibitor protein RNA activators of 2′,5′-oligoadenylate synthetase from prostate cancer cells. Nucleic Acids Research, 2006, 34, 6684-6695.	14.5	48
84	Effect of Epidermal Growth Factor Receptor Inhibitor Class in the Treatment of Head and Neck Cancer with Concurrent Radiochemotherapy In vivo. Clinical Cancer Research, 2007, 13, 2512-2518.	7.0	48
85	TMPRSS2–ERG-Mediated Feed-Forward Regulation of Wild-Type ERG in Human Prostate Cancers. Cancer Research, 2011, 71, 5387-5392.	0.9	42
86	MTHFD1L, A Folate Cycle Enzyme, Is Involved in Progression of Colorectal Cancer. Translational Oncology, 2019, 12, 1461-1467.	3.7	42
87	Largeâ€scale profiling of serum metabolites in African American and European American patients with bladder cancer reveals metabolic pathways associated with patient survival. Cancer, 2019, 125, 921-932.	4.1	42
88	Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition. International Journal of Cancer, 2006, 118, 1041-1050.	5.1	41
89	Expression and Role of PAICS, a De Novo Purine Biosynthetic Gene in Prostate Cancer. Prostate, 2017, 77, 10-21.	2.3	37
90	Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis. Molecular Cancer Research, 2019, 17, 84-96.	3.4	37

#	Article	IF	CITATIONS
91	Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. International Immunology, 2004, 16, 517-524.	4.0	33
92	PRDM16 suppresses HIF-targeted gene expression in kidney cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	33
93	PAICS, a Purine Nucleotide Metabolic Enzyme, is Involved in Tumor Growth and the Metastasis of Colorectal Cancer. Cancers, 2020, 12, 772.	3.7	32
94	Molecular Correlates of Metastasis by Systematic Pan-Cancer Analysis Across The Cancer Genome Atlas. Molecular Cancer Research, 2019, 17, 476-487.	3.4	28
95	Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model. Translational Oncology, 2020, 13, 100754.	3.7	28
96	Differential proteomic alterations between localised and metastatic prostate cancer. British Journal of Cancer, 2006, 95, 425-430.	6.4	27
97	Ataxia Telangiectasia Mutated Down-regulates Phospho-Extracellular Signal-Regulated Kinase $1/2$ via Activation of MKP-1 in Response to Radiation. Cancer Research, 2006, 66, 11554-11559.	0.9	25
98	Wnt receptor Frizzled 8 is a target of ERG in prostate cancer. Prostate, 2018, 78, 1311-1320.	2.3	25
99	TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Molecular Oncology, 2020, 14, 3007-3029.	4.6	24
100	Amplified centrosomes may underlie aggressive disease course in pancreatic ductal adenocarcinoma. Cell Cycle, 2015, 14, 2798-2809.	2.6	22
101	Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene, 2021, 40, 2081-2095.	5. 9	22
102	Expression and Role of Methylenetetrahydrofolate Dehydrogenase 1 Like (MTHFD1L) in Bladder Cancer. Translational Oncology, 2019, 12, 1416-1424.	3.7	21
103	14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. Journal of Biological Chemistry, 2020, 295, 1754-1766.	3.4	21
104	Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells. Scientific Reports, 2017, 7, 43984.	3.3	20
105	The Enzymatic Activity of Apoptosis-inducing Factor Supports Energy Metabolism Benefiting the Growth and Invasiveness of Advanced Prostate Cancer Cells. Journal of Biological Chemistry, 2012, 287, 43862-43875.	3.4	19
106	PAICS, a De Novo Purine Biosynthetic Enzyme, Is Overexpressed in Pancreatic Cancer and Is Involved in Its Progression. Translational Oncology, 2020, 13, 100776.	3.7	19
107	Therapeutically actionable PAK4 is amplified, overexpressed, and involved in bladder cancer progression. Oncogene, 2020, 39, 4077-4091.	5.9	19
108	Gene Expression Profiling of Advanced Penile Squamous Cell Carcinoma Receiving Cisplatin-based Chemotherapy Improves Prognostication and Identifies Potential Therapeutic Targets. European Urology Focus, 2018, 4, 733-736.	3.1	18

#	Article	IF	Citations
109	Re: Florian Jentzmik, Carsten Stephan, Kurt Miller, et al. Sarcosine in Urine after Digital Rectal Examination Fails as a Marker in Prostate Cancer Detection and Identification of Aggressive Tumours. Eur Urol 2010;58:12–8. European Urology, 2010, 58, e29-e30.	1.9	17
110	PGC1α suppresses kidney cancer progression by inhibiting collagen-induced SNAIL expression. Matrix Biology, 2020, 89, 43-58.	3.6	17
111	Comparative analysis of triple-negative breast cancer transcriptomics of Kenyan, African American and Caucasian Women. Translational Oncology, 2021, 14, 101086.	3.7	17
112	Prostate Cancer Imaging and Biomarkers Guiding Safe Selection of Active Surveillance. Frontiers in Oncology, 2017, 7, 256.	2.8	16
113	Pseudogene Associated Recurrent Gene Fusion in Prostate Cancer. Neoplasia, 2019, 21, 989-1002.	5.3	15
114	Comparative transcriptome analyses reveal genes associated with SARS-CoV-2 infection of human lung epithelial cells. Scientific Reports, 2021, 11, 16212.	3.3	15
115	Role of dutasteride in preâ€clinical ETS fusionâ€positive prostate cancer models. Prostate, 2012, 72, 1542-1549.	2.3	13
116	DCZ0415, a smallâ€molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/βâ€catenin pathway in colorectal cancer. Molecular Oncology, 2022, 16, 1728-1745.	4.6	13
117	Characterization of glycineâ€ <i>N</i> â€acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate, 2019, 79, 1629-1639.	2.3	12
118	MicroRNAâ€mediated inflammation and coagulation effects in rats exposed to an inhaled analog of sulfur mustard. Annals of the New York Academy of Sciences, 2020, 1479, 148-158.	3.8	10
119	Collagen modifying enzyme P4HA1 is overexpressed and plays a role in lung adenocarcinoma. Translational Oncology, 2021, 14, 101128.	3.7	10
120	A Systems Approach to Model Metastatic Progression: Figure 1 Cancer Research, 2006, 66, 5537-5539.	0.9	9
121	The TGF-β/HDAC7 axis suppresses TCA cycle metabolism in renal cancer. JCI Insight, 2021, 6, .	5.0	9
122	The combined survival effect of codon 72 polymorphisms and p53 somatic mutations in breast cancer depends on race and molecular subtype. PLoS ONE, 2019, 14, e0211734.	2.5	7
123	Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer, 2021, 28, 496-505.	2.9	7
124	Expression of MHC class I polypeptide-related sequence A (MICA) in colorectal cancer. Frontiers in Bioscience, 2021, 26, 765.	2.1	7
125	Global molecular alterations involving recurrence or progression of pediatric brain tumors. Neoplasia, 2022, 24, 22-33.	5.3	7
126	MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood, 2022, 139, 761-778.	1.4	7

#	Article	IF	CITATIONS
127	Tomlins et al. reply. Nature, 2009, 457, E2-E3.	27.8	6
128	Loss of RUNX3 expression is an independent adverse prognostic factor in diffuse large B-cell lymphoma. Leukemia and Lymphoma, 2017, 58, 179-184.	1.3	6
129	Distinct Gene Expression Profiles of Matched Primary and Metastatic Triple-Negative Breast Cancers. Cancers, 2022, 14, 2447.	3.7	6
130	Targeting the link between late pregnancy and breast cancer. ELife, 2013, 2, e01926.	6.0	4
131	Fermentable fiber-induced hepatocellular carcinoma in mice recapitulates gene signatures found in human liver cancer. PLoS ONE, 2020, 15, e0234726.	2.5	4
132	Fermentable fibers induce rapid macro- and micronutrient depletion in Toll-like receptor 5-deficient mice. American Journal of Physiology - Renal Physiology, 2020, 318, G955-G965.	3.4	3
133	<i>NAB2-STAT6</i> Gene Fusions to Evaluate Primary/Metastasis of Hemangiopericytoma/Solitary Fibrous Tumors. American Journal of Clinical Pathology, 2021, 156, 906-912.	0.7	3
134	Prostate Cancer: An Update on Molecular Pathology with Clinical Implications. European Urology Supplements, 2017, 16, 253-271.	0.1	2
135	Prostate Cancer Genomics: Progress and Promise. European Urology, 2013, 64, 577-578.	1.9	1
136	Meta-analysis of the robustness of COVID-19 diagnostic kit performance during the early pandemic. BMJ Open, 2022, 12, e053912.	1.9	1
137	Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. Journal of Cell Biology, 2006, 172, iX-iX.	5.2	0
138	Inhibition of Histone Methylation Arrests Ongoing Graft-Versus-Host Diseases in Mice by Selectively Inducing Apoptosis of Alloreactive Effector T Cells. Blood, 2011, 118, 820-820.	1.4	0
139	EZH2 Upregulation Is Associated with Unfavorable Prognosis in Diffuse Large B-Cell Lymphoma through Potential RUNX3 Downregulation. Blood, 2016, 128, 5301-5301.	1.4	0
140	Increased Expression of EZH2 Is Associated with Inferior Survival in Primary Central Nervous System Diffuse Large B-Cell Lymphoma. Blood, 2016, 128, 4216-4216.	1.4	0
141	Association between Hepatitis C Virus Infection, p53 Phenotypes, and Gene Variants of Adenomatous Polyposis Coli in Hepatocellular Carcinomas. , 2016, 2016, .		0
142	MS4A3 Promotes Differentiation in Chronic Myeloid Leukemia By Enhancing Common Î ² Chain Cytokine Receptor Endocytosis. Blood, 2021, 138, 59-59.	1.4	0
143	Reducing regorafenib toxicity by combining with dual JAK-HDAC inhibitor in colorectal cancer Journal of Clinical Oncology, 2022, 40, e15597-e15597.	1.6	0