Mark A Knepper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3485506/publications.pdf

Version: 2024-02-01

221 papers 17,901 citations

69 h-index 126 g-index

228 all docs 228 docs citations

times ranked

228

14407 citing authors

#	Article	IF	Citations
1	Identification and proteomic profiling of exosomes in human urine. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13368-13373.	7.1	1,875
2	Aquaporins in the Kidney: From Molecules to Medicine. Physiological Reviews, 2002, 82, 205-244.	28.8	1,122
3	Aldosterone-mediated regulation of ENaC \hat{l}^{\pm} , \hat{l}^2 , and \hat{l}^3 subunit proteins in rat kidney. Journal of Clinical Investigation, 1999, 104, R19-R23.	8.2	660
4	Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. Journal of the American Society of Nephrology: JASN, 2009, 20, 363-379.	6.1	634
5	Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment–Specific Transcriptomes. Journal of the American Society of Nephrology: JASN, 2015, 26, 2669-2677.	6.1	455
6	Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9660-9664.	7.1	424
7	Discovery of Urinary Biomarkers. Molecular and Cellular Proteomics, 2006, 5, 1760-1771.	3.8	351
8	Quantitative phosphoproteomics of vasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at two sites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7159-7164.	7.1	331
9	Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7469-7474.	7.1	230
10	Vasopressin-stimulated Increase in Phosphorylation at Ser269 Potentiates Plasma Membrane Retention of Aquaporin-2. Journal of Biological Chemistry, 2008, 283, 24617-24627.	3.4	222
11	Molecular Physiology of Water Balance. New England Journal of Medicine, 2015, 372, 1349-1358.	27.0	210
12	Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. American Journal of Physiology - Renal Physiology, 2000, 279, F46-F53.	2.7	203
13	Regulation of Aquaporin-2 Trafficking by Vasopressin in the Renal Collecting Duct. Journal of Biological Chemistry, 2000, 275, 36839-36846.	3.4	202
14	Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9989-E9998.	7.1	198
15	Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. Journal of Clinical Investigation, 1999, 103, 491-496.	8.2	195
16	Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney International, 1977, 12, 313-323.	5.2	192
17	Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney International, 2011, 80, 1138-1145.	5.2	182
18	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182

#	Article	IF	CITATIONS
19	Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle's loop. American Journal of Physiology - Renal Physiology, 1999, 276, F96-F103.	2.7	173
20	Mouse Models and the Urinary Concentrating Mechanism in the New Millennium. Physiological Reviews, 2007, 87, 1083-1112.	28.8	171
21	Prospects for urinary proteomics: Exosomes as a source of urinary biomarkers (Review Article). Nephrology, 2005, 10, 283-290.	1.6	168
22	Immunocytochemical and immunoelectron microscopic localization of \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l}^3 -ENaC in rat kidney. American Journal of Physiology - Renal Physiology, 2001, 280, F1093-F1106.	2.7	161
23	Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor–dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3882-3887.	7.1	155
24	Large Scale Protein Identification in Intracellular Aquaporin-2 Vesicles from Renal Inner Medullary Collecting Duct. Molecular and Cellular Proteomics, 2005, 4, 1095-1106.	3.8	154
25	Altered expression of renal AQPs and Na ⁺ transporters in rats with Lithium-induced NDI. American Journal of Physiology - Renal Physiology, 2000, 279, F552-F564.	2.7	144
26	Regulation of aquaporin-2 water channel trafficking by vasopressin. Current Opinion in Cell Biology, 1997, 9, 560-564.	5.4	142
27	Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. American Journal of Physiology - Renal Physiology, 2007, 292, F691-F700.	2.7	141
28	Renal aquaporins. Kidney International, 1996, 49, 1712-1717.	5.2	140
29	Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3134-3139.	7.1	135
30	Rosiglitazone Activates Renal Sodium- and Water-Reabsorptive Pathways and Lowers Blood Pressure in Normal Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 426-433.	2.5	128
31	Human Cortical Distal Nephron. Journal of the American Society of Nephrology: JASN, 2002, 13, 836-847.	6.1	128
32	Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney International, 2009, 75, 295-303.	5.2	124
33	Systems-level analysis of cell-specific <i>AQP2</i> gene expression in renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2441-2446.	7.1	117
34	Regulation of the Abundance of Renal Sodium Transporters and Channels by Vasopressin. Experimental Neurology, 2001, 171, 227-234.	4.1	116
35	Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. American Journal of Physiology - Renal Physiology, 2001, 281, F163-F171.	2.7	116
36	Renal Phenotype of UT-A Urea Transporter Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 1583-1592.	6.1	112

#	Article	IF	CITATIONS
37	Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: Mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3634-3639.	7.1	110
38	A Comprehensive Map of mRNAs and Their Isoforms across All 14 Renal Tubule Segments of Mouse. Journal of the American Society of Nephrology: JASN, 2021, 32, 897-912.	6.1	110
39	Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. American Journal of Physiology - Renal Physiology, 2002, 283, F648-F657.	2.7	109
40	Decreased abundance of major Na ⁺ transporters in kidneys of rats with ischemia-induced acute renal failure. American Journal of Physiology - Renal Physiology, 2000, 278, F925-F939.	2.7	108
41	The renal thiazide-sensitive Na-Cl cotransporter as mediator of the aldosterone-escape phenomenon. Journal of Clinical Investigation, 2001, 108, 215-222.	8.2	108
42	Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. American Journal of Physiology - Renal Physiology, 2003, 284, F433-F446.	2.7	107
43	Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15653-15658.	7.1	107
44	Concentrating defect in experimental nephrotic syndrome: Altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney International, 1998, 54, 170-179.	5 . 2	105
45	Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney. American Journal of Physiology - Renal Physiology, 1998, 275, F885-F893.	2.7	103
46	Proteomics and the Kidney. Journal of the American Society of Nephrology: JASN, 2002, 13, 1398-1408.	6.1	103
47	Vasopressin and the regulation of aquaporin-2. Clinical and Experimental Nephrology, 2013, 17, 751-764.	1.6	102
48	Systems-level identification of PKA-dependent signaling in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8875-E8884.	7.1	100
49	Quantitative Proteomics of All 14 Renal Tubule Segments in Rat. Journal of the American Society of Nephrology: JASN, 2020, 31, 1255-1266.	6.1	99
50	A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. Journal of Clinical Investigation, 2009, 119, 3115-3126.	8.2	99
51	Non-muscle Myosin II and Myosin Light Chain Kinase Are Downstream Targets for Vasopressin Signaling in the Renal Collecting Duct. Journal of Biological Chemistry, 2004, 279, 49026-49035.	3.4	97
52	COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. American Journal of Physiology - Renal Physiology, 2005, 289, F322-F333.	2.7	95
53	Profiling of renal tubule Na + transporter abundances in NHE3 and NCC null mice using targeted proteomics. Journal of Physiology, 2001, 530, 359-366.	2.9	94
54	Urea and Renal Function in the 21st Century. Journal of the American Society of Nephrology: JASN, 2007, 18, 679-688.	6.1	94

#	Article	IF	CITATIONS
55	Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiological Genomics, 2008, 32, 229-253.	2.3	93
56	Proteome-Wide Measurement of Protein Half-Lives and Translation Rates in Vasopressin-Sensitive Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2013, 24, 1793-1805.	6.1	93
57	Regulation of Thick Ascending Limb Ion Transporter Abundance in Response to Altered Acid/Base Intake. Journal of the American Society of Nephrology: JASN, 1999, 10, 935-942.	6.1	93
58	Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney International, 2019, 95, 787-796.	5.2	89
59	Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney International, 2004, 65, 54-62.	5.2	86
60	Downregulation of renal aquaporins in response to unilateral ureteral obstruction. American Journal of Physiology - Renal Physiology, 2003, 284, F1066-F1079.	2.7	85
61	Regulation of Thick Ascending Limb Transport by Vasopressina. Journal of the American Society of Nephrology: JASN, 1999, 10, 628-634.	6.1	84
62	Targeted Proteomic Profiling of Renal Na+Transporter and Channel Abundances in Angiotensin II Type 1a Receptor Knockout Mice. Hypertension, 2002, 39, 470-473.	2.7	79
63	Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies. Journal of the American Society of Nephrology: JASN, 2019, 30, 1358-1364.	6.1	79
64	Sodium transporter abundance profiling in kidney: effect of spironolactone. American Journal of Physiology - Renal Physiology, 2002, 283, F923-F933.	2.7	77
65	Detection of Na+ Transporter Proteins in Urine. Journal of the American Society of Nephrology: JASN, 2000, 11, 2128-2132.	6.1	76
66	Dysregulation of renal aquaporins and Na-Cl cotransporter in CCl4-induced cirrhosis. Kidney International, 2000, 58, 216-228.	5. 2	75
67	Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation. Physiological Genomics, 2016, 48, 502-512.	2.3	75
68	High-throughput identification of IMCD proteins using LC-MS/MS. Physiological Genomics, 2006, 25, 263-276.	2.3	74
69	Activation of epithelial Na channels during short-term Na deprivation. American Journal of Physiology - Renal Physiology, 2001, 280, F112-F118.	2.7	72
70	Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD. American Journal of Physiology - Renal Physiology, 2008, 295, F1030-F1043.	2.7	71
71	cDNA array identification of genes regulated in rat renal medulla in response to vasopressin infusion. American Journal of Physiology - Renal Physiology, 2003, 284, F218-F228.	2.7	70
72	Dynamics of the G Protein-coupled Vasopressin V2 Receptor Signaling Network Revealed by Quantitative Phosphoproteomics. Molecular and Cellular Proteomics, 2012, 11, M111.014613.	3.8	70

#	Article	IF	Citations
73	Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome11See Editorial by Berl, p 1418. Kidney International, 1998, 53, 1244-1253.	5.2	67
74	Calmodulin Is Required for Vasopressin-stimulated Increase in Cyclic AMP Production in Inner Medullary Collecting Duct. Journal of Biological Chemistry, 2005, 280, 13624-13630.	3.4	67
75	LC-MS/MS Analysis of Apical and Basolateral Plasma Membranes of Rat Renal Collecting Duct Cells. Molecular and Cellular Proteomics, 2006, 5, 2131-2145.	3.8	67
76	Targeted Single-Cell RNA-seq Identifies Minority Cell Types of Kidney Distal Nephron. Journal of the American Society of Nephrology: JASN, 2021, 32, 886-896.	6.1	67
77	Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. American Journal of Physiology - Renal Physiology, 2009, 296, F649-F657.	2.7	66
78	Reduced AQP1, -2, and -3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. American Journal of Physiology - Renal Physiology, 1998, 275, F724-F741.	2.7	65
79	Regulation of collecting duct AQP3 expression: response to mineralocorticoid. American Journal of Physiology - Renal Physiology, 2002, 283, F1403-F1421.	2.7	65
80	Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction. American Journal of Physiology - Renal Physiology, 2006, 291, F1021-F1032.	2.7	65
81	Increased Abundance of Distal Sodium Transporters in Rat Kidney during Vasopressin Escape. Journal of the American Society of Nephrology: JASN, 2001, 12, 207-217.	6.1	60
82	An Automated Platform for Analysis of Phosphoproteomic Datasets:Â Application to Kidney Collecting Duct Phosphoproteins. Journal of Proteome Research, 2007, 6, 3501-3508.	3.7	58
83	Urinary exosomes: is there a future?. Nephrology Dialysis Transplantation, 2008, 23, 1799-1801.	0.7	58
84	Identifying protein kinase target preferences using mass spectrometry. American Journal of Physiology - Cell Physiology, 2012, 303, C715-C727.	4.6	58
85	Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17119-17124.	7.1	58
86	Vasopressin V ₂ -receptor-dependent regulation of AQP2 expression in Brattleboro rats. American Journal of Physiology - Renal Physiology, 2000, 279, F370-F382.	2.7	56
87	Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex. American Journal of Physiology - Renal Physiology, 2000, 278, F530-F539.	2.7	55
88	Increased renal ENaC subunit and sodium transporter abundances in streptozotocin-induced type 1 diabetes. American Journal of Physiology - Renal Physiology, 2003, 285, F1125-F1137.	2.7	55
89	Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. American Journal of Physiology - Renal Physiology, 2004, 287, F1204-F1212.	2.7	55
90	Phosphoproteomic Profiling Reveals Vasopressin-Regulated Phosphorylation Sites in Collecting Duct. Journal of the American Society of Nephrology: JASN, 2010, 21, 303-315.	6.1	54

#	Article	IF	Citations
91	Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats. American Journal of Physiology - Renal Physiology, 2002, 282, F34-F44.	2.7	53
92	Application of systems biology principles to protein biomarker discovery: Urinary exosomal proteome in renal transplantation. Proteomics - Clinical Applications, 2012, 6, 268-278.	1.6	52
93	Proteomic analysis of long-term vasopressin action in the inner medullary collecting duct of the Brattleboro rat. American Journal of Physiology - Renal Physiology, 2004, 286, F216-F224.	2.7	51
94	Quantitative analysis of aquaporin-2 phosphorylation. American Journal of Physiology - Renal Physiology, 2010, 298, F1018-F1023.	2.7	51
95	Quantitative Protein and mRNA Profiling Shows Selective Post-Transcriptional Control of Protein Expression by Vasopressin in Kidney Cells. Molecular and Cellular Proteomics, 2011, 10, M110.004036.	3.8	51
96	Aquaporinâ€2 regulation in health and disease. Veterinary Clinical Pathology, 2012, 41, 455-470.	0.7	51
97	Renal Expression of Aquaporins in Liver Cirrhosis Induced by Chronic Common Bile Duct Ligation in Rats. Journal of the American Society of Nephrology: JASN, 1999, 10, 1950-1957.	6.1	51
98	AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. American Journal of Physiology - Renal Physiology, 2002, 283, F1313-F1325.	2.7	50
99	Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO. American Journal of Physiology - Renal Physiology, 2003, 285, F843-F851.	2.7	50
100	Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2012, 23, 1008-1018.	6.1	50
101	Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. American Journal of Physiology - Renal Physiology, 1999, 277, F257-F270.	2.7	49
102	Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation. Molecular and Cellular Proteomics, 2016, 15, 1556-1571.	3.8	49
103	Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. American Journal of Physiology - Renal Physiology, 2008, 294, F702-F709.	2.7	48
104	Measurement of osmolality in kidney slices using vapor pressure osmometry. Kidney International, 1982, 21, 653-655.	5.2	47
105	Dehydration reverses vasopressin antagonist-induced diuresis and aquaporin-2 downregulation in rats. American Journal of Physiology - Renal Physiology, 1998, 275, F400-F409.	2.7	47
106	Regulation of the sodium transporters NHE3, NKCC2 and NCC in the kidney. Current Opinion in Nephrology and Hypertension, 2001, 10, 655-659.	2.0	47
107	Role of aquaporins in water balance disorders. Current Opinion in Nephrology and Hypertension, 1997, 6, 367-371.	2.0	46
108	SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. American Journal of Physiology - Renal Physiology, 1998, 275, F752-F760.	2.7	46

#	Article	IF	Citations
109	Combined Proteomics and Pathways Analysis of Collecting Duct Reveals a Protein Regulatory Network Activated in Vasopressin Escape. Journal of the American Society of Nephrology: JASN, 2005, 16, 2852-2863.	6.1	45
110	Vasopressin regulates apical targeting of aquaporin-2 but not of UT1 urea transporter in renal collecting duct. American Journal of Physiology - Renal Physiology, 1999, 276, F559-F566.	2.7	44
111	Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney International, 2014, 86, 757-767.	5.2	44
112	Effects of dietary protein restriction and glucocorticoid administration on urea excretion in rats. Kidney International, 1975, 8, 303-315.	5.2	43
113	Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS. Physiological Genomics, 2010, 40, 167-183.	2.3	43
114	Does SARS-CoV-2 Infect the Kidney?. Journal of the American Society of Nephrology: JASN, 2020, 31, 2746-2748.	6.1	43
115	Taking aim at shotgun phosphoproteomics. Analytical Biochemistry, 2008, 375, 1-10.	2.4	42
116	Common Sense Approaches to Urinary Biomarker Study Design. Journal of the American Society of Nephrology: JASN, 2009, 20, 1175-1178.	6.1	41
117	Effect of primary polydipsia on aquaporin and sodium transporter abundance. American Journal of Physiology - Renal Physiology, 2003, 285, F965-F971.	2.7	40
118	Gamble's "economy of water―revisited: studies in urea transporter knockout mice. American Journal of Physiology - Renal Physiology, 2006, 291, F148-F154.	2.7	40
119	Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser ²⁵⁶ . American Journal of Physiology - Cell Physiology, 2014, 307, C123-C139.	4.6	40
120	Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. American Journal of Physiology - Renal Physiology, 1998, 274, F1161-F1166.	2.7	39
121	Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. American Journal of Physiology - Renal Physiology, 2005, 289, F957-F968.	2.7	39
122	Phosphoinositide signaling in rat inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 1998, 274, F564-F572.	2.7	37
123	Application of difference gel electrophoresis to the identification of inner medullary collecting duct proteins. American Journal of Physiology - Renal Physiology, 2004, 286, F170-F179.	2.7	37
124	Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule. American Journal of Physiology - Cell Physiology, 2011, 300, C755-C770.	4.6	37
125	Automated Quantification Tool for High-Throughput Proteomics Using Stable Isotope Labeling and LCâ°MSn. Analytical Chemistry, 2006, 78, 5752-5761.	6.5	35
126	Systems-level analysis reveals selective regulation of Aqp2 gene expression by vasopressin. Scientific Reports, 2016, 6, 34863.	3.3	35

#	Article	IF	Citations
127	Transcriptomes of Major Proximal Tubule Cell Culture Models. Journal of the American Society of Nephrology: JASN, 2021, 32, 86-97.	6.1	35
128	COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction. American Journal of Physiology - Renal Physiology, 2007, 292, F1322-F1333.	2.7	34
129	Dynamic regulation of lysine acetylation: the balance between acetyltransferase and deacetylase activities. American Journal of Physiology - Renal Physiology, 2017, 313, F842-F846.	2.7	34
130	Renal Tubule Sodium Transporter Abundance Profiling in Rat Kidney. Annals of the New York Academy of Sciences, 2003, 986, 562-569.	3.8	33
131	LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. American Journal of Physiology - Renal Physiology, 2008, 295, F1799-F1806.	2.7	33
132	NHLBI- <i>AbDesigner</i> : an online tool for design of peptide-directed antibodies. American Journal of Physiology - Cell Physiology, 2012, 302, C154-C164.	4.6	33
133	Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. American Journal of Physiology - Renal Physiology, 2000, 279, F1014-F1026.	2.7	32
134	Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling. American Journal of Physiology - Cell Physiology, 2015, 309, C799-C812.	4.6	32
135	STRUCTURAL BIOLOGY: The Atomic Architecture of a Gas Channel. Science, 2004, 305, 1573-1574.	12.6	31
136	Pathophysiology of Aquaporin-2 in Water Balance Disorders. American Journal of the Medical Sciences, 1998, 316, 291-299.	1.1	30
137	Sodium retention in cirrhotic rats is associated with increased renal abundance of sodium transporter proteins. Kidney International, 2005, 67, 622-630.	5.2	29
138	Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2008, 295, F192-F201.	2.7	29
139	Vasopressin inhibits apoptosis in renal collecting duct cells. American Journal of Physiology - Renal Physiology, 2013, 304, F177-F188.	2.7	29
140	Genome-Wide Mapping of DNA Accessibility and Binding Sites for CREB and $C/EBP\hat{l}^2$ in Vasopressin-Sensitive Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2018, 29, 1490-1500.	6.1	29
141	In vacuo isotope coded alkylation technique (IVICAT); an N-terminal stable isotopic label for quantitative liquid chromatography/mass spectrometry proteomics. Rapid Communications in Mass Spectrometry, 2006, 20, 2463-2477.	1.5	28
142	Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters. American Journal of Physiology - Renal Physiology, 2010, 299, F559-F567.	2.7	28
143	Gene expression databases for kidney epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 302, F401-F407.	2.7	27
144	Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions. American Journal of Physiology - Cell Physiology, 2015, 309, C785-C798.	4.6	27

#	Article	IF	Citations
145	From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiological Reviews, 2018, 98, 2571-2606.	28.8	27
146	RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney International, 2019, 96, 363-377.	5.2	27
147	The Application of DIGE-Based Proteomics to Renal Physiology. Nephron Physiology, 2006, 104, p61-p72.	1.2	26
148	Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells. American Journal of Physiology - Cell Physiology, 2012, 303, C1006-C1020.	4.6	26
149	Systems biology in physiology: the vasopressin signaling network in kidney. American Journal of Physiology - Cell Physiology, 2012, 303, C1115-C1124.	4.6	26
150	Increased collecting duct urea transporter expression in Dahl salt-sensitive rats. American Journal of Physiology - Renal Physiology, 2003, 285, F143-F151.	2.7	25
151	Tolvaptan as a tool in renal physiology. American Journal of Physiology - Renal Physiology, 2014, 306, F359-F366.	2.7	24
152	Phosphorylation Changes in Response to Kinase Inhibitor H89 in PKA-Null Cells. Scientific Reports, 2019, 9, 2814.	3.3	24
153	PKAâ€independent vasopressin signaling in renal collecting duct. FASEB Journal, 2020, 34, 6129-6146.	0.5	24
154	Tandem Mass Spectrometry in Physiology. Physiology, 2007, 22, 390-400.	3.1	23
155	Vasopressin-induced serine 269 phosphorylation reduces Sipall1 (signal-induced) Tj ETQq1 1 0.784314 rgBT 2017, 292, 7984-7993.	Overlock 10 3.4	Tf 50 347 To 23
156	Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH. Kidney International, 2018, 93, 128-146.	5.2	23
157	Phosphoproteomic identification of vasopressin V2 receptor-dependent signaling in the renal collecting duct. American Journal of Physiology - Renal Physiology, 2019, 317, F789-F804.	2.7	22
158	"SLC-omics―of the kidney: solute transporters along the nephron. American Journal of Physiology - Cell Physiology, 2021, 321, C507-C518.	4.6	22
159	Peter Agre, 2003 Nobel Prize Winner in Chemistry. Journal of the American Society of Nephrology: JASN, 2004, 15, 1093-1095.	6.1	21
160	Urea channel inhibitors: a new functional class of aquaretics. Kidney International, 2013, 83, 991-993.	5.2	21
161	From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes. American Journal of Physiology - Renal Physiology, 2017, 312, F533-F542.	2.7	21
162	CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase. American Journal of Physiology - Renal Physiology, 2020, 318, F600-F616.	2.7	21

#	Article	IF	Citations
163	BIG: a large-scale data integration tool for renal physiology. American Journal of Physiology - Renal Physiology, 2016, 311, F787-F792.	2.7	20
164	Phosphoproteomics of vasopressin signaling in the kidney. Expert Review of Proteomics, 2011, 8, 157-163.	3.0	18
165	Flow resistance along the rat renal tubule. American Journal of Physiology - Renal Physiology, 2018, 315, F1398-F1405.	2.7	18
166	Effect of peristaltic contractions of the renal pelvic wall on solute concentrations of the renal inner medulla in the hamster. American Journal of Physiology - Renal Physiology, 2006, 290, F892-F896.	2.7	17
167	Expression and functional implications of the renal apelinergic system in rodents. PLoS ONE, 2017, 12, e0183094.	2.5	17
168	Vasopressin: friend or foe?. Nature Medicine, 2008, 14, 14-16.	30.7	16
169	Molecular coin slots for urea. Nature, 2009, 462, 733-734.	27.8	16
170	Modulation of Cl $\langle \sup \hat{a}^2 \langle \sup \rangle$ signaling and ion transport by recruitment of kinases and phosphatases mediated by the regulatory protein IRBIT. Science Signaling, 2018, 11, .	3.6	16
171	Identification of UT-A1- and AQP2-interacting proteins in rat inner medullary collecting duct. American Journal of Physiology - Cell Physiology, 2018, 314, C99-C117.	4.6	15
172	Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A–Dependent Signaling in Kidney. Molecular Pharmacology, 2021, 99, 358-369.	2.3	15
173	Phosphoproteomic identification of vasopressinâ€regulated protein kinases in collecting duct cells. British Journal of Pharmacology, 2021, 178, 1426-1444.	5.4	15
174	An efficient dynamic programming algorithm for phosphorylation site assignment of large-scale mass spectrometry data., 2012,, 618-625.		13
175	Global analysis of the effects of the V2 receptor antagonist satavaptan on protein phosphorylation in collecting duct. American Journal of Physiology - Renal Physiology, 2014, 306, 410-421.	2.7	13
176	Systems biology of diuretic resistance. Journal of Clinical Investigation, 2015, 125, 1793-1795.	8.2	13
177	Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells. Physiological Genomics, 2016, 48, 154-166.	2.3	13
178	Identification of \hat{I}^2 -catenin-interacting proteins in nuclear fractions of native rat collecting duct cells. American Journal of Physiology - Renal Physiology, 2017, 313, F30-F46.	2.7	13
179	Endogenous Carbamylation of Renal Medullary Proteins. PLoS ONE, 2013, 8, e82655.	2.5	13
180	Database of osmoregulated proteins in mammalian cells. Physiological Reports, 2014, 2, e12180.	1.7	12

#	Article	IF	CITATIONS
181	Protein kinase A catalytic- \hat{l}_{\pm} and catalytic- \hat{l}_{-}^2 proteins have nonredundant regulatory functions. American Journal of Physiology - Renal Physiology, 2020, 319, F848-F862.	2.7	12
182	Bayesian identification of candidate transcription factors for the regulation of <i>Aqp2</i> gene expression. American Journal of Physiology - Renal Physiology, 2021, 321, F389-F401.	2.7	12
183	Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination. American Journal of Physiology - Cell Physiology, 2012, 302, C27-C45.	4.6	11
184	PTM-Logo: a program for generation of sequence logos based on position-specific background amino-acid probabilities. Bioinformatics, 2019, 35, 5313-5314.	4.1	11
185	Landscape of GPCR expression along the mouse nephron. American Journal of Physiology - Renal Physiology, 2021, 321, F50-F68.	2.7	11
186	Molecular Physiology of Renal Aquaporins and Sodium Transporters: Exciting Approaches to Understand Regulation of Renal Water Handling. Journal of the American Society of Nephrology: JASN, 2005, 16, 2827-2829.	6.1	10
187	A knowledge base of vasopressin actions in the kidney. American Journal of Physiology - Renal Physiology, 2014, 307, F747-F755.	2.7	10
188	Peptide Labeling Using Isobaric Tagging Reagents for Quantitative Phosphoproteomics. Methods in Molecular Biology, 2016, 1355, 53-70.	0.9	10
189	Long-term regulation of urinary concentrating capacity. American Journal of Physiology - Renal Physiology, 1998, 275, F332-F333.	2.7	9
190	Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct. American Journal of Physiology - Renal Physiology, 2017, 312, F84-F95.	2.7	9
191	Data integration in physiology using Bayes' rule and minimum Bayes' factors: deubiquitylating enzymes in the renal collecting duct. Physiological Genomics, 2017, 49, 151-159.	2.3	9
192	Proteomic Approaches for the Study of Cell Signaling in the Renal Collecting Duct., 2008, 160, 172-185.		8
193	Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct. Physiological Genomics, 2018, 50, 669-679.	2.3	8
194	Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses. Cell Communication and Signaling, 2022, 20, .	6.5	7
195	Sickle cell disease upâ€regulates vasopressin, aquaporin 2, urea transporter A1, Naâ€Kâ€Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability. Physiological Reports, 2019, 7, e14066.	1.7	6
196	An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiological Genomics, 2020, 52, 485-491.	2.3	6
197	Four-dimensional MRI of renal function in the developing mouse. NMR in Biomedicine, 2014, 27, 1094-1102.	2.8	5
198	Prioritizing Functional Goals as We Rebuild the Kidney. Journal of the American Society of Nephrology: JASN, 2019, 30, 2287-2288.	6.1	5

#	Article	IF	Citations
199	Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annual Review of Pharmacology and Toxicology, 2022, 62, 595-616.	9.4	5
200	"ADPKD-omics― determinants of cyclic AMP levels in renal epithelial cells. Kidney International, 2022, 101, 47-62.	5.2	5
201	Courier service for ammonia. Nature, 2008, 456, 336-337.	27.8	4
202	An online tool for calculation of free-energy balance for the renal inner medulla. American Journal of Physiology - Renal Physiology, 2012, 303, F366-F372.	2.7	3
203	Proteomic pearl diving versus systems biology in cell physiology. Focus on "Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytesâ€. American Journal of Physiology - Cell Physiology, 2014, 306, C634-C635.	4.6	3
204	Roflumilast and aquaporinâ€⊋ regulation in rat renal inner medullary collecting duct. Physiological Reports, 2017, 5, e13121.	1.7	3
205	AbDesigner3D: a structure-guided tool for peptide-based antibody production. Bioinformatics, 2018, 34, 2158-2160.	4.1	3
206	NGS-Integrator: An efficient tool for combining multiple NGS data tracks using minimum Bayes' factors. BMC Genomics, 2020, 21, 806.	2.8	3
207	Integrated Design of Antibodies for Systems Biology Using Ab Designer. Journal of Proteomics and Bioinformatics, 2014, 07, 088-94.	0.4	2
208	Protein Mass Spectrometry Made Simple. Journal of the American Society of Nephrology: JASN, 2018, 29, 1585-1587.	6.1	2
209	Letter to the editor: "Systems biology versus reductionism in cell physiology― American Journal of Physiology - Cell Physiology, 2014, 307, C308-C309.	4.6	1
210	Exploiting thread-level and instruction-level parallelism to cluster mass spectrometry data using multicore architectures. Network Modeling Analysis in Health Informatics and Bioinformatics, 2014, 3, 54.	2.1	1
211	Reply to Edemir: Physiological regulation and single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E351-E352.	7.1	1
212	Diuretics: Mechanisms of Action., 2005,, 638-652.		1
213	Chapter 4 Pathophysiology of renal aquaporins. Current Topics in Membranes, 2001, 51, 155-183.	0.9	0
214	Sequence-based searching of custom proteome and transcriptome databases. Physiological Reports, 2018, 6, e13846.	1.7	0
215	GPCRâ€omics of the Nephron: Mapping Receptors Along the Renal Tubule. FASEB Journal, 2021, 35, .	0.5	0
216	Mappingâ€based temporal pattern mining algorithm (MTPMA) identifies unique clusters of phosphopeptides regulated by vasopressin in collecting duct. FASEB Journal, 2011, 25, 921.4.	0.5	0

#	Article	IF	CITATIONS
217	Identification of proteins regulated by 24â€hour aldosterone treatment in late distal convoluted tubules, connecting tubules and initial cortical collecting ducts. FASEB Journal, 2012, 26, 885.9.	0.5	O
218	Activation of EP3 receptors suppresses COXâ€⊋ in thick ascending limb (TAL) and inhibits water excretion. FASEB Journal, 2015, 29, 809.21.	0.5	0
219	Proteomic Determination of the Rat Native Inner Medullary Collecting Duct Lysine Acetylome and Phosphoproteome. FASEB Journal, 2018, 32, 850.3.	0.5	O
220	Fortyâ€five Vasopressinâ€Regulated Phosphoproteins Involved in Control of Collecting Duct Water Transport. FASEB Journal, 2022, 36, .	0.5	0
221	Maurice B. Burg (1931–2022), discoverer of kidney transport mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0