Andreas Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3484142/publications.pdf

Version: 2024-02-01

361413 361022 1,256 39 20 35 citations h-index g-index papers 39 39 39 1689 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of the Na-P _i cotransport systems. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R301-R312.	1.8	121
2	The functions of natural antisense transcripts. Essays in Biochemistry, 2013, 54, 91-101.	4.7	120
3	What do natural antisense transcripts regulate?. RNA Biology, 2009, 6, 43-48.	3.1	89
4	Natural antisense transcripts: sound or silence?. Physiological Genomics, 2005, 23, 125-131.	2.3	72
5	Endogenous siRNAs: regulators of internal affairs. Biochemical Society Transactions, 2014, 42, 1174-1179.	3.4	65
6	Functional characterization of a Na+-phosphate cotransporter (NaPi-II) from zebrafish and identification of related transcripts. Journal of Physiology, 1999, 520, 79-89.	2.9	54
7	Natural Antisense Transcripts. RNA Biology, 2005, 2, 53-62.	3.1	51
8	Naturally occurring antisense RNA: function and mechanisms of action. Current Opinion in Nephrology and Hypertension, 2009, 18, 343-349.	2.0	45
9	Biological functions of natural antisense transcripts. BMC Biology, 2013, 11, 31.	3.8	42
10	Structural Fold and Binding Sites of the Human Na+-Phosphate Cotransporter NaPi-II. Biophysical Journal, 2014, 106, 1268-1279.	0.5	42
11	Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs. Physiological Genomics, 2008, 34, 95-100.	2.3	41
12	Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics, 2014, 15, 19.	2.8	40
13	Expression profiling of antisense transcripts on DNA arrays. Physiological Genomics, 2007, 28, 294-300.	2.3	39
14	Strand selective generation of endo-siRNAs from the Na/phosphate transporter gene Slc34a1 in murine tissues. Nucleic Acids Research, 2009, 37, 2274-2282.	14.5	39
15	Natural Antisense Transcripts at the Interface between Host Genome and Mobile Genetic Elements. Frontiers in Microbiology, 2017, 8, 2292.	3.5	38
16	Phosphate Transporters in Renal, Gastrointestinal, and Other Tissues. Advances in Chronic Kidney Disease, 2011, 18, 63-76.	1.4	36
17	What are natural antisense transcripts good for?. Biochemical Society Transactions, 2010, 38, 1144-1149.	3.4	34
18	The Na+-phosphate cotransport system (NaPi-II) with a cleaved protein backbone: implications on function and membrane insertion. Journal of Physiology, 1998, 508, 341-350.	2.9	33

#	Article	IF	CITATIONS
19	Clinical, biochemical, and pathophysiological analysis of <i>SLC34A1</i> mutations. Physiological Reports, 2018, 6, e13715.	1.7	32
20	Identification of the First Sodium Binding Site of the Phosphate Cotransporter NaPi-Ila (SLC34A1). Biophysical Journal, 2015, 108, 2465-2480.	0.5	30
21	Endogenous Double-Stranded RNA. Non-coding RNA, 2021, 7, 15.	2.6	26
22	Cation Interactions and Membrane Potential Induce Conformational Changes in NaPi-IIb. Biophysical Journal, 2016, 111, 973-988.	0.5	21
23	Effect of low-phosphate diet on sodium/phosphate cotransport mRNA and protein content and on oocyte expression of phosphate transport. Pediatric Nephrology, 1993, 7, 823-826.	1.7	20
24	Translated anti-sense product of the Na/phosphate co-transporter (NaPi-II). Biochemical Journal, 1998, 332, 483-489.	3.7	15
25	Evaluating pathogenicity of SLC34A3-Ser192Leu, a frequent European missense variant in disorders of renal phosphate wasting. Urolithiasis, 2019, 47, 511-519.	2.0	15
26	The role of an intracellular cysteine stretch in the sorting of the type II Na/phosphate cotransporter. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2099-2106.	2.6	14
27	Natural antisense transcription from a comparative perspective. Genomics, 2016, 108, 56-63.	2.9	14
28	Regulation of the NPT Gene by a Naturally Occurring Antisense Transcript. Cell Biochemistry and Biophysics, 2002, 36, 241-252.	1.8	12
29	Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Annals of the New York Academy of Sciences, 2015, 1341, 156-163.	3 . 8	12
30	Physiological and molecular mechanisms of inorganic phosphate handling in the toad Bufo bufo. Pflugers Archiv European Journal of Physiology, 2007, 454, 101-113.	2.8	11
31	Type II Na+-phosphate Cotransporters and Phosphate Balance in Teleost Fish. Pflugers Archiv European Journal of Physiology, 2019, 471, 193-212.	2.8	9
32	Ectopically expressed Slc34a2a sense-antisense transcripts cause a cerebellar phenotype in zebrafish embryos depending on RNA complementarity and Dicer. PLoS ONE, 2017, 12, e0178219.	2.5	9
33	Widespread formation of double-stranded RNAs in testis. Genome Research, 2021, 31, 1174-1186.	5.5	6
34	Molecular determinants of transport function in zebrafish Slc34a Na-phosphate transporters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1213-R1222.	1.8	4
35	Generation of Endo-siRNAs in Xenopus laevis Oocytes. Methods in Molecular Biology, 2014, 1173, 27-32.	0.9	2
36	Expression cloning human and rat renal cortex Na/Pi cotransporters: behind the scenes in the Murer laboratory. Pflugers Archiv European Journal of Physiology, 2019, 471, 7-14.	2.8	1

3

Andreas Werner

#	Article	IF	CITATIONS
37	Phosphate transport: from microperfusion to molecular cloning. Pflugers Archiv European Journal of Physiology, 2019, 471, 1-6.	2.8	1
38	Interdependent Transcription of a Natural Sense/Antisense Transcripts Pair (SLC34A1/PFN3). Non-coding RNA, 2022, 8, 19.	2.6	1
39	Phosphate reabsorption in the kidney: NaPi-IIb or not IIb. Pflugers Archiv European Journal of Physiology, 2020, 472, 437-438.	2.8	0