Caty Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483936/publications.pdf

Version: 2024-02-01

52	10,571 citations	27	182427 51
papers	citations	h-index	g-index
53 all docs	53 docs citations	53 times ranked	22966 citing authors

#	Article	IF	CITATIONS
1	Endogenous Mechanisms of Neuroprotection: To Boost or Not to Be. Cells, 2021, 10, 370.	4.1	10
2	GRP78 Overexpression Triggers PINK1-IP3R-Mediated Neuroprotective Mitophagy. Biomedicines, 2021, 9, 1039.	3.2	2
3	NeuroHeal Improves Muscle Regeneration after Injury. Cells, 2021, 10, 22.	4.1	2
4	Is it the time of autophagy fine-tuners for neuroprotection?. Autophagy, 2020, 16, 2108-2109.	9.1	4
5	Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease. Toxins, 2020, 12, 666.	3.4	2
6	NeuroHeal Reduces Muscle Atrophy and Modulates Associated Autophagy. Cells, 2020, 9, 1575.	4.1	4
7	Novel neuroprotective therapy with NeuroHeal by autophagy induction for damaged neonatal motoneurons. Theranostics, 2020, 10, 5154-5168.	10.0	11
8	SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics, 2020, 17, 1197-1211.	4.4	8
9	NeuroHeal Treatment Alleviates Neuropathic Pain and Enhances Sensory Axon Regeneration. Cells, 2020, 9, 808.	4.1	10
10	Improved Motor Nerve Regeneration by SIRT1/Hif1a-Mediated Autophagy. Cells, 2019, 8, 1354.	4.1	22
11	Network-centric medicine for peripheral nerve injury: Treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regeneration Research, 2019, 14, 1122.	3.0	13
12	Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence. Scientific Reports, 2018, 8, 1879.	3.3	56
13	ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons. Cell Death and Disease, 2018, 9, 626.	6.3	15
14	SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death and Disease, 2018, 9, 531.	6.3	26
15	Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation. Scientific Reports, 2017, 7, 12028.	3.3	20
16	GRP78 at the Centre of the Stage in Cancer and Neuroprotection. Frontiers in Neuroscience, 2017, 11, 177.	2.8	166
17	TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge. Autophagy, 2016, 12, 614-617.	9.1	2
18	Synaptic Failure: Focus in an Integrative View of ALS. Brain Plasticity, 2016, 1, 159-175.	3.5	40

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS ONE, 2016, 11, e0147626.	2.5	29
21	Changes of voltage-gated sodium channels in sensory nerve regeneration and neuropathic pain models. Restorative Neurology and Neuroscience, 2015, 33, 321-334.	0.7	14
22	Network-based proteomic approaches reveal the neurodegenerative, neuroprotective and pain-related mechanisms involved after retrograde axonal damage. Scientific Reports, 2015, 5, 9185.	3.3	29
23	Neonatal finasteride administration alters hippocampal $\hat{l}\pm 4$ and \hat{l}' GABAAR subunits expression and behavioural responses to progesterone in adult rats. International Journal of Neuropsychopharmacology, 2014, 17, 259-273.	2.1	17
24	Neonatal allopregnanolone levels alteration: Effects on behavior and role of the hippocampus. Progress in Neurobiology, 2014, 113, 95-105.	5 . 7	20
25	Neonatal allopregnanolone or finasteride administration modifies hippocampal K+ Clâ^' co-transporter expression during early development in male rats. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 343-347.	2.5	11
26	Intrathecal administration of IGF-I by AAVrh10 improves sensory and motor deficits in a mouse model of diabetic neuropathy. Molecular Therapy - Methods and Clinical Development, 2014, 1, 7.	4.1	31
27	Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain and Behavior, 2013, 3, 145-158.	2,2	69
28	The Câ€terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. Journal of Neurochemistry, 2013, 124, 36-44.	3.9	23
29	Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain and Behavior, 2013, 3, 328-328.	2,2	0
30	Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice. Neurotherapeutics, 2012, 9, 814-826.	4.4	143
31	Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 302-310.	2.1	42
32	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
33	Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death and Disease, 2011, 2, e149-e149.	6.3	137
34	Sigma Receptor Agonist 2-(4-Morpholinethyl)1 Phenylcyclohexanecarboxylate (Pre084) Increases GDNF and BiP Expression and Promotes Neuroprotection after Root Avulsion Injury. Journal of Neurotrauma, 2011, 28, 831-840.	3.4	53
35	Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury. Neuroscience, 2011, 178, 33-44.	2.3	67
36	Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death and Differentiation, 2011, 18, 1617-1627.	11.2	48

#	Article	IF	CITATIONS
37	Effects of Schwann cell transplants in an experimental nerve amputee model. Restorative Neurology and Neuroscience, 2009, 27, 67-78.	0.7	9
38	Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience, 2009, 162, 31-38.	2.3	53
39	Cytoskeletal and Activity-Related Changes in Spinal Motoneurons after Root Avulsion. Journal of Neurotrauma, 2009, 26, 763-779.	3.4	40
40	Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage. Restorative Neurology and Neuroscience, 2009, 27, 335-349.	0.7	24
41	Analysis of FK506-mediated protection in an organotypic model of spinal cord damage: Heat shock protein 70 levels are modulated in microglial cells. Neuroscience, 2008, 155, 104-113.	2.3	29
42	Influence of the substrate's hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research - Part A, 2007, 83A, 463-470.	4.0	39
43	Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. Journal of Neurochemistry, 2007, 102, 1242-1255.	3.9	143
44	Effects of COX-2 and iNOS Inhibitors Alone or in Combination With Olfactory Ensheathing Cell Grafts After Spinal Cord Injury. Spine, 2006, 31, 1100-1106.	2.0	19
45	Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated AÎ 2 42 Accumulation in a Novel Alzheimer Transgenic Model. American Journal of Pathology, 2004, 165, 1289-1300.	3.8	375
46	<i>Oyrk1A</i> Haploinsufficiency Affects Viability and Causes Developmental Delay and Abnormal Brain Morphology in Mice. Molecular and Cellular Biology, 2002, 22, 6636-6647.	2.3	306
47	Dscr1, a novel endogenous inhibitor of calcineurin signaling, is expressed in the primitive ventricle of the heart and during neurogenesis. Mechanisms of Development, 2001, 101, 289-292.	1.7	58
48	The human intersectin genes and their spliced variants are differentially expressed. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1521, 1-11.	2.4	56
49	Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. European Journal of Human Genetics, 1999, 7, 704-712.	2.8	74
50	HumanMinibrainHomologue (MNBH/DYRK1): Characterization, Alternative Splicing, Differential Tissue Expression, and Overexpression in Down Syndrome. Genomics, 1999, 57, 407-418.	2.9	169
51	Cosmid Contig and Transcriptional Map of Three Regions of Human Chromosome 21q22: Identification of 37 Novel Transcripts by Direct Selection. Genomics, 1997, 45, 59-67.	2.9	11
52	A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Human Molecular Genetics, 1996, 5, 1305-1310.	2.9	197