Masahiko Hasumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3483933/publications.pdf

Version: 2024-02-01

840776 839539 57 376 11 18 citations h-index g-index papers 57 57 57 246 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activation of 300-mm-Diameter-Phosphorus-Implanted Silicon Substrates by Wireless Carbon Heating Tubes. , 2021, , .		O
2	Argon Precursor Ion Implantation Used to Activate Boron Atoms in Silicon at Low Temperatures. IEEE Access, 2020, 8, 72598-72606.	4.2	0
3	Development of Microwave-Induced Rapid Heating System Using Wireless Carbon Heating Tubes. , 2020, , .		О
4	Carbon Heating Tube Used for Rapid Heating System. IEEE Access, 2019, 7, 23798-23805.	4.2	6
5	Carbon Heating Tube Rapid Heating System for Fabricating Silicon Solar Cells. , 2019, , .		О
6	Activation of dopant in silicon by ion implantation under heating sample at 200°C. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
7	Two-Step Ion Implantation used for Activating Boron Atoms in Silicon at 300°C. , 2018, , .		О
8	Surface Passivation of Crystalline Silicon by Heat Treatment in Liquid Water and its Application to Improve the Interface Properties of Metal-Oxide-Semiconductor Structures. , 2018, , .		0
9	Reduction in connecting resistivity and optical reflection loss at intermediate layer for mechanically stacked multijunction solar cells. Japanese Journal of Applied Physics, 2018, 57, 102301.	1.5	О
10	Carbon Heating Tube Used for Rapid Heating System for Semiconductor Annealing. , 2018, , .		1
11	Indium gallium zinc oxide layer used to decrease optical reflection loss at intermediate adhesive region for fabricating mechanical stacked multijunction solar cells. Japanese Journal of Applied Physics, 2017, 56, 012602.	1.5	2
12	Crystallization and activation of silicon by microwave rapid annealing. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
13	Microwave rapid heating used for diffusing impurities in silicon. , 2016, , .		O
14	Surface passivation of crystalline silicon by heat treatment in liquid water. , 2016, , .		0
15	Heat treatment in 110°C liquid water used for passivating silicon surfaces. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	1
16	Passivation of Silicon Surfaces by Treatment in Water at 110°C. Materials Research Society Symposia Proceedings, 2015, 1770, 37-42.	0.1	1
17	Passivation of silicon surfaces by heat treatment in liquid water at $110~{\rm \^{A}}^{\circ}{\rm C}$. Japanese Journal of Applied Physics, 2015, 54, 106503.	1.5	3
18	Annihilation properties of photo-induced carrier in silicon pn junction., 2015,,.		O

#	Article	IF	CITATIONS
19	Indium–gallium–zinc–oxide layer used to increase light transmittance efficiency of adhesive layer for stacked-type multijunction solar cells. Japanese Journal of Applied Physics, 2015, 54, 112301.	1.5	6
20	Laser annealing of plasma-damaged silicon surface. Applied Surface Science, 2015, 336, 73-78.	6.1	2
21	Reduction in optical reflection loss at intermediate adhesive layer for mechanical stacked multi-junction solar cells. , $2015, \ldots$		O
22	Photoinduced carrier annihilation in silicon pn junction. Japanese Journal of Applied Physics, 2015, 54, 081302.	1.5	7
23	Multi junction solar cells using band-gap induced cascaded light absorption. Japanese Journal of Applied Physics, 2014, 53, 05FV07.	1.5	2
24	Crystallization of Amorphous Silicon Thin Films by Microwave Heating. Materials Research Society Symposia Proceedings, 2014, 1666, 115.	0.1	3
25	Activation of silicon implanted with phosphorus and boron atoms by microwave annealing with carbon powder as a heat source. Japanese Journal of Applied Physics, 2014, 53, 05FV05.	1.5	9
26	Minority Carrier Annihilation at Crystalline Silicon Interface in Metal Oxide Semiconductor Structure. Materials Research Society Symposia Proceedings, 2014, 1666, 18.	0.1	1
27	Passivation of silicon surfaces by heat treatment in boiled water and its application of solar cells. , $2014, , .$		0
28	Decrease in reflection loss at intermediate adhesive layer for mechanical stacking multijunction solar cells., 2014,,.		0
29	Photo induced minority carrier annihilation at crystalline silicon surface in metal oxide semiconductor structure. Japanese Journal of Applied Physics, 2014, 53, 031301.	1.5	6
30	Passivation of silicon surfaces by oxygen radical followed by high pressure $H<\inf>20$ vapor heat treatments and its application to solar cell fabrication., 2014,,.		0
31	Investigation of conductivity of adhesive layer including indium tin oxide particles for multi-junction solar cells. Applied Physics A: Materials Science and Processing, 2014, 116, 2113-2118.	2.3	6
32	Mechanical Stacking Multi Junction Solar Cells Using Transparent Conductive Adhesive. Energy Procedia, 2014, 60, 116-122.	1.8	30
33	Passivation of Silicon Surface by Laser Rapid Heating. Journal of Laser Micro Nanoengineering, 2014, 9, 143-146.	0.1	0
34	Investigation of Silicon Surface Passivation by Microwave Annealing Using Multiple-Wavelength Light-Induced Carrier Lifetime Measurement. Japanese Journal of Applied Physics, 2013, 52, 011801.	1.5	10
35	Surface Passivation of Crystalline Silicon by Combination of Amorphous Silicon Deposition with High-Pressure H ₂ O Vapor Heat Treatment. Japanese Journal of Applied Physics, 2012, 51, 03CA06.	1.5	5
36	Infrared semiconductor laser irradiation used for crystallization of silicon thin films. Journal of Non-Crystalline Solids, 2012, 358, 2162-2165.	3.1	1

3

#	Article	IF	CITATIONS
37	Heat treatment of amorphous silicon p-i-n solar cells with high-pressure H2O vapor. Journal of Non-Crystalline Solids, 2012, 358, 2285-2288.	3.1	7
38	Surface Passivation of Crystalline Silicon by Combination of Amorphous Silicon Deposition with High-Pressure H2O Vapor Heat Treatment. Japanese Journal of Applied Physics, 2012, 51, 03CA06.	1.5	1
39	Laser Induced Formation of Buried Void Layer in Silicon. Journal of Laser Micro Nanoengineering, 2012, 7, 93-96.	0.1	O
40	Characterization of Plasma-Irradiated SiO2/Si Interface Properties by Photoinduced-Carrier Microwave Absorption Method. Japanese Journal of Applied Physics, 2011, 50, 03CA03.	1.5	8
41	Minority Carrier Lifetime Measurements by Photoinduced Carrier Microwave Absorption Method. Japanese Journal of Applied Physics, 2011, 50, 03CA02.	1.5	11
42	Multi Junction Solar Cells Stacked with Transparent and Conductive Adhesive. Japanese Journal of Applied Physics, 2011, 50, 052301.	1.5	21
43	Minority Carrier Lifetime Measurements by Photoinduced Carrier Microwave Absorption Method. Japanese Journal of Applied Physics, 2011, 50, 03CA02.	1.5	22
44	Characterization of Plasma-Irradiated SiO ₂ /Si Interface Properties by Photoinduced-Carrier Microwave Absorption Method. Japanese Journal of Applied Physics, 2011, 50, 03CA03.	1.5	3
45	Multi Junction Solar Cells Stacked with Transparent and Conductive Adhesive. Japanese Journal of Applied Physics, 2011, 50, 052301.	1.5	19
46	Crystalline Silicon Solar Cells with Two Different Metals. Japanese Journal of Applied Physics, 2010, 49, 110205.	1.5	13
47	HfO2/Si and HfSiO/Si Structures Fabricated by Oxidation of Metal Thin Films. Japanese Journal of Applied Physics, 2009, 48, 05DA01.	1.5	15
48	Fabrication of High-k/Si Structure Using Metal Deposition Followed by Oxidation. ECS Transactions, 2009, 16, 139-145.	0.5	3
49	Thermal Stability of HfO2Films Fabricated by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47, 31-34.	1.5	2
50	Low-Temperature Fabrication of Ultrathin ZrO2/Si Structure Using Metal Deposition Followed by Oxygen Annealing. Japanese Journal of Applied Physics, 2005, 44, 5-7.	1.5	20
51	Experimental studies of three superconducting states in the organic superconductor \hat{l}^2 -(BEDT-TTF)2I3. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2675-2676.	1.2	1
52	Critical Field Anisotropy in "2K-Superconducting State―of Organic Superconductor β-(BEDT-TTF)2I3. Journal of the Physical Society of Japan, 1989, 58, 3477-3480.	1.6	4
53	Dimensionality of the Superconductivity in YBa2Cu3O7-δ. Journal of the Physical Society of Japan, 1988, 57, 1554-1557.	1.6	34
54	Low-Temperature Electron Spin Susceptibility in YBa2Cu3O7-x. Journal of the Physical Society of Japan, 1988, 57, 3301-3304.	1.6	13

#	Article	IF	CITATIONS
55	Magnetic Susceptibility of YBa2Cu3O7-xwith Various Oxygen Deficiency. Journal of the Physical Society of Japan, 1988, 57, 2272-2275.	1.6	29
56	Antiferromagnetic Transition in Y2BaCuO5. Japanese Journal of Applied Physics, 1987, 26, L2018-L2020.	1.5	33
57	Characterization of the High-TcSuperconductors Rare-Earth–Ba–Cu Oxides–Resistivity, Susceptibility and Structure–. Japanese Journal of Applied Physics, 1987, 26, 1033.	1.5	4