Frank Seeber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3482880/publications.pdf Version: 2024-02-01

FDANK SEERED

#	Article	IF	CITATIONS
1	From 3D to 2D: Harmonization of Protocols for Two-dimensional Cultures on Cell Culture Inserts of Intestinal Organoids from Various Species. Bio-protocol, 2022, 12, e4295.	0.4	6
2	Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. Journal of Biological Chemistry, 2022, 298, 101468.	3.4	10
3	In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nature Communications, 2022, 13, 1168.	12.8	20
4	Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay. MSphere, 2021, 6, .	2.9	8
5	Screening for common eye diseases in the elderly with Optos ultra-wide-field scanning laser ophthalmoscopy: a pilot study with focus on ocular toxoplasmosis. International Ophthalmology, 2021, 41, 1573-1584.	1.4	3
6	Estimates of Toxoplasmosis Incidence Based on Healthcare Claims Data, Germany, 2011–2016. Emerging Infectious Diseases, 2021, 27, 2097-2106.	4.3	5
7	Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology—Current Status and Future Perspectives. Microorganisms, 2021, 9, 2346.	3.6	16
8	Fluorescent bead-based serological detection of Toxoplasma gondii infection in chickens. Parasites and Vectors, 2020, 13, 388.	2.5	9
9	Expression of in vivo biotinylated recombinant antigens SAG1 and SAG2A from Toxoplasma gondii for improved seroepidemiological bead-based multiplex assays. BMC Biotechnology, 2020, 20, 53.	3.3	4
10	The apicoplast and mitochondrion of Toxoplasma gondii. , 2020, , 499-545.		4
11	Harmonization of Protocols for Multi-Species Organoid Platforms to Study the Intestinal Biology of Toxoplasma gondii and Other Protozoan Infections. Frontiers in Cellular and Infection Microbiology, 2020, 10, 610368.	3.9	32
12	Detection of Anti-Toxoplasma gondii Antibodies in Human Sera Using Synthetic Glycosylphosphatidylinositol Glycans on a Bead-Based Multiplex Assay. Analytical Chemistry, 2019, 91, 11215-11222.	6.5	9
13	From Entry to Early Dissemination—Toxoplasma gondii's Initial Encounter With Its Host. Frontiers in Cellular and Infection Microbiology, 2019, 9, 46.	3.9	58
14	Evidence of high exposure to Toxoplasma gondii in free-ranging and captive African carnivores. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 111-117.	1.5	30
15	Toxoplasmosis in Germany: Epidemiology, Diagnosis, Risk Factors, and Treatment. Deutsches Ärzteblatt International, 2019, 116, 435-444.	0.9	36
16	Recombinant IFN-γ from the bank vole Myodes glareolus: a novel tool for research on rodent reservoirs of zoonotic pathogens. Scientific Reports, 2018, 8, 2797.	3.3	4
17	Metabolic interactions between Toxoplasma gondii and its host. F1000Research, 2018, 7, 1719.	1.6	64
18	Toxoplasma gondii plaque assays revisited: Improvements for ultrastructural and quantitative evaluation of lytic parasite growth. Experimental Parasitology, 2017, 180, 19-26.	1.2	16

FRANK SEEBER

#	Article	IF	CITATIONS
19	Translational Rodent Models for Research on Parasitic Protozoa—A Review of Confounders and Possibilities. Frontiers in Cellular and Infection Microbiology, 2017, 7, 238.	3.9	33
20	Recent advances in understanding apicomplexan parasites. F1000Research, 2016, 5, 1369.	1.6	56
21	Toxoplasma. , 2016, , 217-239.		0
22	Prevalence, incidence estimations and risk factors of Toxoplasma gondii infection in Germany: a representative, cross-sectional, serological study. Scientific Reports, 2016, 6, 22551.	3.3	140
23	Protein–protein interaction studies provide evidence for electron transfer from ferredoxin to lipoic acid synthase in <i>Toxoplasma gondii</i> . FEBS Letters, 2015, 589, 31-36.	2.8	10
24	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	4.7	115
25	The Apicoplast and Mitochondrion ofÂToxoplasma gondii. , 2014, , 297-350.		5
26	12th International Congress on Toxoplasmosis. International Journal for Parasitology, 2014, 44, 83-84.	3.1	0
27	Giardia duodenalis Arginine Deiminase Modulates the Phenotype and Cytokine Secretion of Human Dendritic Cells by Depletion of Arginine and Formation of Ammonia. Infection and Immunity, 2013, 81, 2309-2317.	2.2	46
28	High Sensitivity of Giardia duodenalis to Tetrahydrolipstatin (Orlistat) In Vitro. PLoS ONE, 2013, 8, e71597.	2.5	23
29	Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. International Journal of Medical Microbiology, 2012, 302, 203-209.	3.6	50
30	Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development. Cellular Microbiology, 2012, 14, 416-430.	2.1	40
31	Fosmidomycin Uptake into Plasmodium and Babesia-Infected Erythrocytes Is Facilitated by Parasite-Induced New Permeability Pathways. PLoS ONE, 2011, 6, e19334.	2.5	74
32	Metabolic Pathways in the Apicoplast of Apicomplexa. International Review of Cell and Molecular Biology, 2010, 281, 161-228.	3.2	134
33	Citations in supplementary information are invisible. Nature, 2008, 451, 887-887.	27.8	11
34	Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends in Parasitology, 2008, 24, 468-478.	3.3	116
35	Ferredoxin-NADP+ Reductase from Plasmodium falciparum Undergoes NADP+-dependent Dimerization and Inactivation: Functional and Crystallographic Analysis. Journal of Molecular Biology, 2007, 367, 501-513.	4.2	40
36	Patent searches as a complement to literature searches in the life sciences—a 'how-to' tutorial. Nature Protocols, 2007, 2, 2418-2428.	12.0	19

FRANK SEEBER

#	Article	IF	CITATIONS
37	The Expression of a Plant-type Ferredoxin Redox System provides Molecular Evidence for a Plastid in the Early Dinoflagellate Perkinsus marinus. Protist, 2007, 158, 119-130.	1.5	46
38	Roles of the Species-Specific Subdomain and the N-Terminal Peptide of Toxoplasma gondii Ferredoxin-NADP+ Reductase in Ferredoxin Binding. Biochemistry, 2006, 45, 3563-3571.	2.5	9
39	Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO Journal, 2006, 25, 3214-3222.	7.8	130
40	Membrane Topology and Transient Acylation of Toxoplasma gondii Glycosylphosphatidylinositols. Eukaryotic Cell, 2006, 5, 1420-1429.	3.4	10
41	The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs. Expert Opinion on Therapeutic Targets, 2005, 9, 23-44.	3.4	50
42	The Plant-Type Ferredoxin-NADP+ Reductase/Ferredoxin Redox System as a Possible Drug Target Against Apicomplexan Human Parasites. Current Pharmaceutical Design, 2005, 11, 3159-3172.	1.9	63
43	Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis ofPlasmodium falciparum. FEBS Letters, 2005, 579, 6433-6438.	2.8	91
44	A single in vivo-selected point mutation in the active center ofToxoplasma gondiiferredoxin-NADP+reductase leads to an inactive enzyme with greatly enhanced affinity for ferredoxin. FEBS Letters, 2004, 576, 375-380.	2.8	16
45	Toxoplasma gondii: analysis of the active site insertion of its ferredoxin-NADP+-reductase by peptide-specific antibodies and homology-based modeling. Experimental Parasitology, 2003, 103, 68-77.	1.2	13
46	Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Letters, 2003, 547, 80-86.	2.8	71
47	Biosynthetic Pathways of Plastid-Derived Organelles as Potential Drug Targets Against Parasitic Apicomplexa. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2003, 3, 99-109.	1.8	55
48	Ferredoxin-NADP+ Reductase and Ferredoxin of the Protozoan Parasite Toxoplasma gondii Interact Productivelyin Vitro and in Vivo. Journal of Biological Chemistry, 2002, 277, 48463-48471.	3.4	44
49	Biogenesis of iron–sulphur clusters in amitochondriate and apicomplexan protists. International Journal for Parasitology, 2002, 32, 1207-1217.	3.1	77
50	Eukaryotic genomes contain a [2Feî—,2S] ferredoxin isoform with a conserved C-terminal sequence motif. Trends in Biochemical Sciences, 2002, 27, 545-547.	7.5	16
51	Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. International Journal for Parasitology, 2001, 31, 1355-1369.	3.1	27
52	Apicomplexan Parasites Possess Distinct Nuclear-encoded, but Apicoplast-localized, Plant-type Ferredoxin-NADP+ Reductase and Ferredoxin. Journal of Biological Chemistry, 2001, 276, 5483-5490.	3.4	103
53	â€~Transfection' vs â€~Transformation': Defining Terms. Parasitology Today, 2000, 16, 404.	3.0	5
54	The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes. Journal of Cell Biology, 2000, 151, 1423-1434.	5.2	222

FRANK SEEBER

0

#	Article	IF	CITATIONS
55	An enzyme-release assay for the assessment of the lytic activities of complement or antimicrobial peptides on extracellular Toxoplasma gondii. Journal of Microbiological Methods, 2000, 39, 189-196.	1.6	15
56	Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Molecular and Biochemical Parasitology, 1999, 99, 295-299.	1.1	15
57	Toxoplasma gondii:A Paraformaldehyde-Insensitive Diaphorase Activity Acts as a Specific Histochemical Marker for the Single Mitochondrion. Experimental Parasitology, 1998, 89, 137-139.	1.2	19
58	Localization of T and B Cell Stimulating Domains of the Immunodominant 33-kDa Protein of Onchocerca volvulus(Ov33). Clinical Immunology and Immunopathology, 1997, 85, 56-66.	2.0	7
59	Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitology Research, 1997, 83, 309-311.	1.6	79
60	Escherichia coli β-galactosidase as an in vitro and in vivo reporter enzyme and stable transfection marker in the intracellular protozoan parasite Toxoplasma gondii. Gene, 1996, 169, 39-45.	2.2	128
61	Restriction enzyme-mediated integration elevates transformation frequency and enables co-transfection of Toxoplasma gondii. Molecular and Biochemical Parasitology, 1995, 74, 55-63.	1.1	84
62	[1] Forward and reverse genetics in the study of the obligate, intracellular parasite Toxoplasma gondii. Methods in Molecular Genetics, 1995, 6, 3-29.	0.6	16
63	Onchocerca volvulus andAcanthocheilonema viteae: cloning of cDNAs for muscle-cell intermediate filaments. Zeitschrift FÃ1⁄4r Parasitenkunde (Berlin, Germany), 1994, 80, 699-702.	0.8	6

64 Malaria and Antimalarials– A Focused View. , 0, , 277-298.