Vladimir Umansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/348011/publications.pdf

Version: 2024-02-01

219 papers 12,753 citations

59 h-index 24258 110 g-index

221 all docs

221 docs citations

times ranked

221

5714 citing authors

#	Article	IF	CITATIONS
1	Absent thermal equilibration on fractional quantum Hall edges over macroscopic scale. Nature Communications, 2022, 13, 376.	12.8	18
2	Distinguishing between non-abelian topological orders in a quantum Hall system. Science, 2022, 375, 193-197.	12.6	34
3	Absorption of Microwave Radiation by Two-Dimensional Electron Systems Associated with the Excitation of Dimensional Bernstein Mode Resonances. JETP Letters, 2021, 113, 670-675.	1.4	3
4	Single-Shot Readout of a Driven Hybrid Qubit in a GaAs Double Quantum Dot. Nano Letters, 2021, 21, 4999-5005.	9.1	15
5	Significant energy relaxation of quantum dot emitted hot electrons. Physical Review Research, 2021, 3, Terahertz Sources Based on Emission from a <mml:math< td=""><td>3.6</td><td>1</td></mml:math<>	3.6	1
6	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mrow><mml:mi>Ga</mml:mi><mml:mi>As</mml:mi></mml:mrow>		

#	Article	IF	Citations
19	Synthesizing a $\hat{1}/2=2/3$ fractional quantum Hall effect edge state from counter-propagating $\hat{1}/2=1$ and $\hat{1}/2=1/3$ states. Nature Communications, 2019, 10, 1920.	12.8	36
20	Quantum Effects in the Capacitance of Field-Effect Transistors with a Double Quantum Well. JETP Letters, 2019, 110, 424-429.	1.4	6
21	Counter-propagating charge transport in the quantum Hall effect regime. Science, 2019, 363, 54-57.	12.6	24
22	Interaction-induced interference in the integer quantum Hall effect. Physical Review B, 2018, 97, .	3.2	17
23	Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells. Physical Review Letters, 2018, 120, 047402.	7.8	16
24	Robust integer and fractional helical modes in the quantum Hall effect. Nature Physics, 2018, 14, 411-416.	16.7	23
25	Current Flow in the Bubble and Stripe Phases. Physical Review Letters, 2018, 120, 137603.	7.8	12
26	Freezing of the Dynamics of Spontaneous Electric Field Domains in Microwave-Induced States with a Low Dissipation. JETP Letters, 2018, 108, 215-219.	1.4	2
27	Effect of Microwave Radiation on Quantum Magnetocapacitance Oscillations. JETP Letters, 2018, 108, 465-470.	1.4	0
28	Tuning Methods for Semiconductor Spin Qubits. Physical Review Applied, 2018, 10, .	3.8	33
29	Characterization of individual layers in a bilayer electron system produced in a wide quantum well. Journal of Applied Physics, 2018, 123, .	2.5	9
30	Dynamics of Spontaneous Electric Field Domains in a Two-Dimensional Electron System Irradiated by Microwaves and the Conductance of a Donor Layer. JETP Letters, 2018, 107, 61-65.	1.4	4
31	Attractive Coulomb interactions in a triple quantum dot. Physical Review B, 2018, 97, .	3.2	14
32	Observation of half-integer thermal Hall conductance. Nature, 2018, 559, 205-210.	27.8	249
33	Subterahertz Emission from a Grid-Gated GaAs/AlGaAs Heterostructure. Acta Physica Polonica A, 2018, 134, 978-980.	0.5	0
34	Edge reconstruction in fractional quantum HallÂstates. Nature Physics, 2017, 13, 491-496.	16.7	59
35	The local nature of incompressibility of quantum Hall effect. Nature Communications, 2017, 8, 14082.	12.8	12
36	Observed quantization of anyonic heat flow. Nature, 2017, 545, 75-79.	27.8	146

#	Article	IF	Citations
37	Threading dislocations in MBE grown AlInSb metamorphic buffers: Revealed and counted. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	3
38	Hall field-induced resistance oscillations in a tunable-density GaAs quantum well. Physical Review B, 2017, 96, .	3.2	6
39	Electron spin-flip correlations due to nuclear dynamics in driven GaAs double dots. Physical Review B, 2017, 95, .	3.2	5
40	Negative permittivity in bubble and stripe phases. Nature Physics, 2017, 13, 1124-1129.	16.7	26
41	Nontrivial transition of transmission in a highly open quantum point contact in the quantum Hall regime. Physical Review B, 2017, 96, .	3.2	3
42	Evidence for non-Markovian electron dynamics in the microwave absorption of a two-dimensional electron system. Physical Review B, 2017, 96, .	3.2	8
43	Transmission of heat modes across a potential barrier. Nature Communications, 2017, 8, 2251.	12.8	11
44	Toggling plasmon cavities with the gate bias. , 2016, , .		0
45	Multiple magnetic resonance of nuclei in a two-dimensional electron system. Physical Review B, 2016, 93, .	3.2	2
46	Dephasing of an electronic two-path interferometer. Physical Review B, 2016, 93, .	3.2	20
47	Microwave-Induced Oscillations in Magnetocapacitance: Direct Evidence for Nonequilibrium Occupation of Electronic States. Physical Review Letters, 2016, 117, 176801.	7.8	17
48	Observation of interaction-induced modulations of a quantum Hall liquid's area. Nature Communications, 2016, 7, 12184.	12.8	23
49	Observation of the variations of the domain structure of a spontaneous electric field in a two-dimensional electron system under microwave irradiation. JETP Letters, 2016, 104, 721-725.	1.4	4
50	Characterization ofSâ^'T+transition dynamics via correlation measurements. Physical Review B, 2015, 92, .	3.2	5
51	Repairing nanoscale devices using electron-beam-induced deposition of platinum. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 051803.	1.2	2
52	Photoresponse of a two-dimensional electron gas at the second harmonic of the cyclotron resonance. Physical Review B, 2015, 91, .	3.2	15
53	Robust electron pairing in the integer quantum hall effect regime. Nature Communications, 2015, 6, 7435.	12.8	36
54	Disorder-enhanced nuclear spin relaxation at Landau level filling factor one. Chinese Physics B, 2015, 24, 067302.	1.4	3

#	Article	lF	Citations
55	Random Flips of Electric Field in Microwave-Induced States with Spontaneously Broken Symmetry. Physical Review Letters, 2015, 114, 176808.	7.8	15
56	Plasma excitations in a high electron mobility GaAs/AlGaAs heterostructure controlled by a visible light. Optical Engineering, 2015, 54, 017101.	1.0	0
57	Quenching of dynamic nuclear polarization by spin–orbit coupling in GaAs quantum dots. Nature Communications, 2015, 6, 7682.	12.8	59
58	Universal Fermi liquid crossover and quantum criticality in a mesoscopic system. Nature, 2015, 526, 237-240.	27.8	87
59	Magnetic-field tunable THz detectors based on GaAs/AlGaAs and CdTe/CdMgTe quantum wells. , 2014, , .		0
60	Nonequilibrated Counterpropagating Edge Modes in the Fractional Quantum Hall Regime. Physical Review Letters, 2014, 113, 266803.	7.8	26
61	Publisher's Note: Charge Fractionalization in the Integer Quantum Hall Effect [Phys. Rev. Lett. 112, 166801 (2014)]. Physical Review Letters, 2014, 112, .	7.8	0
62	Plasmon dispersions in high electron mobility terahertz detectors. Applied Physics Letters, 2014, 104, .	3.3	19
63	Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure. Journal of Applied Physics, 2014, 115, 214503.	2.5	72
64	Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Communications, 2014, 5, 5156.	12.8	150
65	Visible-light controlled plasma excitations in high electron mobility GaAs/AlGaAs heterostructure. Proceedings of SPIE, 2014, , .	0.8	0
66	Charge Fractionalization in the Integer Quantum Hall Effect. Physical Review Letters, 2014, 112, 166801.	7.8	66
67	Exciton Liquid in Coupled Quantum Wells. Science, 2014, 343, 55-57.	12.6	71
68	Probing the Microscopic Structure of the Stripe Phase at Filling Factor <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>></mml:mn>>><td>/> 7,8 /> <td>nath>.</td></td></mml:math>	/> 7,8 /> <td>nath>.</td>	nath>.
69	Proliferation of neutral modes in fractional quantum Hall states. Nature Communications, 2014, 5, 4067.	12.8	77
70	An electronic quantum eraser. Science, 2014, 344, 1363-1366.	12.6	36
71	Multi-Valued Logic Gates based on Ballistic Transport in Quantum Point Contacts. Scientific Reports, 2014, 4, 3806.	3.3	16
72	MBE growth of high-mobility 2DEG. , 2013, , 121-137.		7

#	Article	IF	Citations
73	Charge Frustration in a Triangular Triple Quantum Dot. Physical Review Letters, 2013, 110, 046803.	7.8	68
74	Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit. Physical Review Letters, 2013, 110, 146804.	7.8	289
75	Quantized <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>ν</mml:mi><mml:mo><</mml:mo><mml:mn>5</mml:mn><mml:mo> in a Two-Subband Quantum Hall System. Physical Review Letters, 2012, 108, 046804.</mml:mo></mml:math>	าก กไล mn>2	? <b reml:mn>
76	Upstream Neutral Modes in the Fractional Quantum Hall Effect Regime: Heat Waves or Coherent Dipoles. Physical Review Letters, 2012, 108, 226801.	7.8	51
77	NMR Probing of the Spin Polarization of theν=5/2Quantum Hall State. Physical Review Letters, 2012, 108, 066810. Current-induced nuclear spin depolarization at Landau level filling factor∢mml:math	7.8	64
78	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>ν</mml:mi> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>=</mml:mo></mml:mrow>1/2. Physical Review B,</mml:math 	3.2	12
79	2012, 86, . Controlled Dephasing of an Electron Interferometer with a Path Detector at Equilibrium. Physical Review Letters, 2012, 109, 250401.	7.8	25
80	Extracting net current from an upstream neutral mode in the fractional quantum Hall regime. Nature Communications, 2012, 3, 1289.	12.8	41
81	A Newtonian approach to extraordinarily strong negative refraction. Nature, 2012, 488, 65-69.	27.8	34
82	Quantum point contact with large subband energy spacings. Applied Physics Letters, 2012, 100, 183502.	3.3	10
83	How branching can change the conductance of ballistic semiconductor devices. Physical Review B, 2012, 85, .	3.2	23
84	Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits. Science, 2012, 336, 202-205.	12.6	469
85	Magnetoplasmons in a High Electron Mobility GaAs/AlGaAs Heterostructure. Acta Physica Polonica A, 2012, 122, 1096-1098.	0.5	1
86	Is The Charge Determined Via Shot Noise Unique?. AIP Conference Proceedings, 2011, , .	0.4	0
87	Tunable Resonant Detection of sub-THz Radiation with GaAsâ^•AlGaAs High Electron Mobility Transistors at Magnetic Fields., 2011,,.		0
88	Observation of Neutral Modes In The Fractional Quantum Hall Effect Regime. , 2011, , .		3
89	Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 Î⅓s. Nature Physics, 2011, 7, 109-113.	16.7	501
90	Characterizing Neutral Modes of Fractional States in the Second Landau Level. Physical Review Letters, 2011, 107, 036805.	7.8	61

#	Article	IF	CITATIONS
91	Observation of exchange Coulomb interactions in the quantum Hall state at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>$1/2$ </mml:mi> <mml:mo> = </mml:mo> <mml:mn>3 </mml:mn> </mml:mrow><td>>^{3,2}mml:m</td><td>nath>.</td></mml:math>	> ^{3,2} mml:m	nath>.
92	Collective Modes and the Periodicity of Quantum Hall Stripes. Physical Review Letters, 2011, 106, 206804.	7.8	27
93	Spatial variation of the two-dimensional electron gas density induced by an increasing Hall electric field. Physical Review B, 2011, 84, .	3.2	2
94	Enhanced exciton photoluminescence in the selectively Si-doped GaAs/AlxGa1â^2xAs heterostructures. Journal of Applied Physics, 2010, 108, 063522.	2.5	9
95	Carrier density dependent electric transport of serially connected two quantum point contacts. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1122-1125.	2.7	2
96	Observation of neutral modes in the fractional quantum Hall regime. Nature, 2010, 466, 585-590.	27.8	180
97	Shot noise measurement at ν = 5â^•2 quantum Hall state. , 2010, , .		1
98	THz Emission Based On Intersubband Plasmon Resonances. , 2010, , .		0
99	Density dependence of the <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>1½</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>5</mml:mn><mml:mn></mml:mn></mml:mfrac></mml:mstyle></mml:mrow><td>3.2 :math>en</td><td>63 ergy</td></mml:math>	3.2 :math>en	63 ergy
100	Optical Probing of the Spin Polarization of the $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi> $1\frac{1}{2}$ < mml:mi> < mml:mo> < mml:mo> < mml:mn> 5 < mml:mn> < mml:mo> < mml:mo	7.8 ıml:mn>2	(<mark>/</mark> mml:mn >
101	SternetÂal.Reply:. Physical Review Letters, 2010, 104, .	7.8	O
102	Effect of the surface on the electronic properties of a two-dimensional electron gas as measured by the quantum Hall effect. Physical Review B, 2010, 81, .	3.2	7
103	Enhancing the Coherence of a Spin Qubit by Operating it as a Feedback Loop That Controls its Nuclear Spin Bath. Physical Review Letters, 2010, 105, 216803.	7.8	225
104	Nonlinear growth in the amplitude of radiation-induced magnetoresistance oscillations. Physical Review B, 2010, 81 , .	3.2	76
105	Dependence of the tunneling quasiparticle charge determined via shot noise measurements on the tunneling barrier and energetics. Physical Review B, 2010, 81, .	3.2	54
106	Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5276-5281.	7.1	106
107	Time Dependent Electric Fields Generated DC Currents in a Large Gate-Defined Open Dot. Japanese Journal of Applied Physics, 2010, 49, 114001.	1.5	0
108	Effect of scattering on zero-bias anomaly and conductance reduction in quasi-one-dimensional quantum wires. Physical Review B, 2010, 81 , .	3.2	4

#	Article	lF	CITATIONS
109	Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement. Journal of Physics Condensed Matter, 2010, 22, 395303.	1.8	8
110	Phase study of oscillatory resistances in microwave-irradiated- and dark-GaAs/AlGaAs devices: Indications of an unfamiliar class of the integral quantum Hall effect. Physical Review B, 2009, 79, .	3.2	68
111	Photocurrent and Photovoltage Oscillations in the Two-Dimensional Electron System: Enhancement and Suppression of Built-In Electric Fields. Physical Review Letters, 2009, 102, 036602.	7.8	41
112	Shot Noise and Charge at the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>2</mml:mn>/<mml:mn>3</mml:mn></mml:math> Composite Fractional Quantum Hall State. Physical Review Letters, 2009, 103, 236802.	7.8	83
113	Spin dynamics of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system. Physical Review B, 2009, 80, .	3.2	6
114	Nature of the Spin Transition in the Half-filled Landau Level. Physical Review Letters, 2009, 102, 046803.	7.8	13
115	Effect of Ka-band microwave on the spin dynamics of electrons in a GaAs/Al0.35Ga0.65As heterostructure. Applied Physics Letters, 2009, 94, 192107.	3.3	2
116	Dispersion of the Excitations of Fractional Quantum Hall States. Science, 2009, 324, 1044-1047.	12.6	102
117	MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106cm2/Vs. Journal of Crystal Growth, 2009, 311, 1658-1661.	1.5	175
118	Optical Absorption to Probe the Quantum Hall Ferromagnet at Filling Factor <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>1½</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math> . Physical Review Letters, 2009, 102, 126806.	7.8	37
119	Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Physics, 2009, 5, 903-908.	16.7	350
120	The formation of bound states and the conductance modulation on 0.7 anomaly in a quantum wire. Journal of Physics: Conference Series, 2009, 150, 022052.	0.4	2
121	Observation of a quarter of an electron charge at the $\hat{l}\frac{1}{2}$ = 5/2 quantum Hall state. Nature, 2008, 452, 829-834.	27.8	305
122	Quantum mechanical complementarity probed in a closed-loop Aharonov–Bohm interferometer. Nature Physics, 2008, 4, 205-209.	16.7	47
123	Effect of electron-electron scattering on spin dephasing in a high-mobility low-density two-dimensional electron gas. Physical Review B, 2008, 77, .	3.2	28
124	Transmission Phase of a Singly Occupied Quantum Dot in the Kondo Regime. Physical Review Letters, 2008, 100, 226601.	7.8	43
125	Mott Transition of Excitons in Coupled Quantum Wells. Physical Review Letters, 2008, 100, 256402.	7.8	56
126	Inelastic light scattering study of the $\hat{l}/2=1$ quantum Hall ferromagnet. Physical Review B, 2008, 77, .	3.2	20

#	Article	IF	CITATIONS
127	Two-electron bunching in transport through a quantum dot induced by Kondo correlations. Physical Review B, 2008, 77, .	3.2	77
128	Photoluminescence Ring Formation in Coupled Quantum Wells: Excitonic Versus Ambipolar Diffusion. Physical Review Letters, 2008, 101, 257402.	7.8	32
129	Controlled Dephasing of a Quantum Dot Resonance. , 2008, , .		0
130	Beating of Aharonov-Bohm oscillations in a closed-loop interferometer. Physical Review B, 2007, 76, .	3.2	4
131	Current-Induced Anisotropy and Reordering of the Electron Liquid-Crystal Phases in a Two-Dimensional Electron System. Physical Review Letters, 2007, 99, 246402.	7.8	26
132	Entanglement, Dephasing, and Phase Recovery via Cross-Correlation Measurements of Electrons. Physical Review Letters, 2007, 98, 036803.	7.8	110
133	Publisher's Note: Circular-Polarization-Dependent Study of the Microwave Photoconductivity in a Two-Dimensional Electron System [Phys. Rev. Lett.95, 116804 (2005)]. Physical Review Letters, 2007, 98, .	7.8	1
134	Electron Bunching in Transport through Quantum Dots in a High Magnetic Field. Physical Review Letters, 2007, 98, 066801.	7.8	29
135	Fermi-Edge Singularity of Spin-Polarized Electrons. Physical Review Letters, 2007, 98, 186810.	7.8	7
136	Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling. Physical Review Letters, 2007, 98, 096803.	7.8	16
137	Absorption in the Fractional Quantum Hall Regime: Trion Dichroism and Spin Polarization. Physical Review Letters, 2007, 98, 156803.	7.8	24
138	Tunable 0.7 conductance plateau in quantum dots. Physical Review B, 2007, 76, .	3.2	11
139	Spectra of magnetoplasma excitations in back-gate Hall bar structures. Physical Review B, 2007, 75, .	3.2	28
140	Controlled dephasing of electrons by non-gaussian shot noise. Nature Physics, 2007, 3, 534-537.	16.7	86
141	Interference between two indistinguishable electrons from independent sources. Nature, 2007, 448, 333-337.	27.8	268
142	$\label{lem:continuous} $$ $$ \vec{L} = \frac{1}{2} . , 2006, , . $$ \vec{L} = \frac{1}{2} . $$ (a) $$ (b) $$ (b) $$ (b) $$ (b) $$ (c) $$ (c)$		1
143	Circular-polarization-dependent study of the microwave-induced magneto-resistance oscillations in the 2D electron system. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 35, 315-319.	2.7	2
144	Unexpected Behavior in a Two-Path Electron Interferometer. Physical Review Letters, 2006, 96, 016804.	7.8	213

#	Article	lF	Citations
145	Crossover from â€~mesoscopic' to â€~universal' phase for electron transmission in quantum dots. Nature, 2005, 436, 529-533.	27.8	139
146	The absorption spectrum around ν = 1: evidence for a small size Skyrmion. AIP Conference Proceedings, 2005, , .	0.4	0
147	On Bunching Of Fractionally-Charged Quasiparticles. AIP Conference Proceedings, 2005, , .	0.4	O
148	Microwave photoresponse in the two-dimensional electron system caused by intra-Landau-level transitions. Physical Review B, 2005, 71, .	3.2	61
149	Experimental evidence for predicted magnetotransport anomalies in rectangular superlattices. Physical Review B, 2005, 72, .	3.2	10
150	Circular-Polarization-Dependent Study of the Microwave Photoconductivity in a Two-Dimensional Electron System. Physical Review Letters, 2005, 95, 116804.	7.8	186
151	Radiation-induced oscillatory Hall effect in high-mobilityGaAs/AlxGa1â^'xAsdevices. Physical Review B, 2004, 69, .	3.2	96
152	Demonstration of a 1/4-Cycle Phase Shift in the Radiation-Induced Oscillatory Magnetoresistance in GaAs/AlGaAsDevices. Physical Review Letters, 2004, 92, 146801.	7.8	170
153	Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly. Physical Review Letters, 2004, 92, 256801.	7.8	116
154	Absorption Spectrum Aroundν=1: Evidence for a Small-Size Skyrmion. Physical Review Letters, 2004, 93, 096802.	7.8	22
155	Radiation-induced zero-resistance states inGaAsâ^•AlGaAsheterostructures: Voltage-current characteristics and intensity dependence at the resistance minima. Physical Review B, 2004, 70, .	3.2	79
156	Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin-splitting in high-mobilityGaAs/AlxGa1â^xAsdevices. Physical Review B, 2004, 69, .	3.2	110
157	Influence of point defects on magnetic vortex structures. Journal of Applied Physics, 2004, 95, 6708-6710.	2.5	44
158	Localization of Fractionally Charged Quasi-Particles. Science, 2004, 305, 980-983.	12.6	120
159	The microscopic nature of localization in the quantum Hall effect. Nature, 2004, 427, 328-332.	27.8	178
160	The microscopic nature of localization in the quantum Hall effect. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 219-226.	2.7	0
161	Detection of Landau band coupling induced rearrangement of the Hofstadter butterfly. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 227-232.	2.7	11
162	Controlled Dephasing of a Quantum Dot in the Kondo Regime. Physical Review Letters, 2004, 92, 156801.	7.8	34

#	Article	IF	CITATIONS
163	Experimental Realization of a Quantum Spin Pump. Physical Review Letters, 2003, 91, 258301.	7.8	264
164	Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Heterostructures ChemInform, 2003, 34, no.	0.0	2
165	Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 20, 143-148.	2.7	14
166	Spin and Polarized Current from Coulomb Blockaded Quantum Dots. Physical Review Letters, 2003, 91, 016802.	7.8	103
167	Vortex pinning at individual defects in magnetic nanodisks. Journal of Applied Physics, 2003, 93, 7429-7431.	2.5	46
168	Vortex nucleation in submicrometer ferromagnetic disks. Applied Physics Letters, 2003, 82, 4110-4112.	3.3	59
169	Anomalous chiral Luttinger liquid behavior of diluted fractionally charged quasiparticles. Physical Review B, 2003, 67, .	3.2	22
170	Scattering of Bunched Fractionally Charged Quasiparticles. Physical Review Letters, 2003, 91, 216804.	7.8	83
171	A Gate-Controlled Bidirectional Spin Filter Using Quantum Coherence. Science, 2003, 299, 679-682.	12.6	143
172	Long-range Spatial Correlations in the Exciton Energy Distribution in GaAs/AlGaAsQuantum Wells. Physical Review Letters, 2002, 89, 157402.	7.8	17
173	Condensation of bulk excitons on a magnetized two-dimensional electron gas in modulation-doped heterojunctions. Physical Review B, 2002, 65, .	3.2	15
174	Internal Transitions of Negatively Charged Magnetoexcitons and Many Body Effects in a Two-Dimensional Electron Gas. Physical Review Letters, 2002, 88, 056801.	7.8	27
175	Anisotropy and periodicity in the density distribution of electrons in a quantum well. Physical Review B, 2002, 66, .	3.2	9
176	Detecting Spin-Polarized Currents in Ballistic Nanostructures. Physical Review Letters, 2002, 89, 266602.	7.8	111
177	The Microscopic Origin of the Exciton-Charged Exciton Spectrum. Physica Status Solidi A, 2002, 190, 607-614.	1.7	0
178	A novel split gate design to study interaction effects in quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 89-93.	2.7	0
179	Measurements of the compressibility of the composite fermion metallic state in a 2D electron system. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 97-100.	2.7	4
180	Anomalous temperature dependence of commensurability oscillations in one- and two-dimensional lateral superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 208-211.	2.7	4

#	Article	IF	Citations
181	Commensurability effects in two-dimensional electron gases with periodically arranged Ni and NiFe nanopillars. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 216-219.	2.7	1
182	Cyclotron spin-flip excitations in the 2D-electron system. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 574-577.	2.7	3
183	Magnetic field induced evolution from bulk exciton to 2DEG-free hole luminescence in modulation doped heterojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 524-527.	2.7	0
184	Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature, 2002, 420, 646-650.	27.8	616
185	Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers. Nature, 2002, 416, 515-518.	27.8	41
186	Low-Temperature Fate of the 0.7 Structure in a Point Contact: A Kondo-like Correlated State in an Open System. Physical Review Letters, 2002, 88, 226805.	7.8	363
187	Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance. Physical Review Letters, 2001, 86, 147-150.	7.8	218
188	Cyclotron spin-wave in the 2D electron system. JETP Letters, 2001, 74, 270-273.	1.4	2
189	Monolithic integration of a quantum-well infrared photodetector array with a read-out circuit. Applied Physics Letters, 2001, 78, 472-474.	3.3	4
190	Comparison between the compressibilities of the zero field and composite-fermion metallic states of the two-dimensional electron system. Physical Review B, 2001, 63, .	3.2	10
191	Excitonic emission in the presence of a two-dimensional electron gas: A microscopic view. Physical Review B, 2001, 64, .	3.2	16
192	Composite fermions in a weakly density modulated 2DEG: direct evidence of a periodic magnetic field around. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 87-90.	2.7	3
193	Dimensional magnetoplasma resonance detected by free-exciton photoluminescence in modulation-dopedGaAs/AlxGa1a~xAsheterojunctions. Physical Review B, 2000, 62, 10310-10317.	3.2	21
194	Evolution of Quasiparticle Charge in the Fractional Quantum Hall Regime. Physical Review Letters, 2000, 85, 3918-3921.	7.8	52
195	Recombination Dynamics of Negatively Charged Excitons in Gated GaAs Quantum Wells., 2000,, 169-172.		0
196	Commensurate Composite Fermions in Weak Periodic Electrostatic Potentials: Direct Evidence of a Periodic Effective Magnetic Field. Physical Review Letters, 1999, 83, 2620-2623.	7.8	52
197	Fermiology of Two-Dimensional Lateral Superlattices. Physical Review Letters, 1999, 83, 2234-2237.	7.8	68
198	Observation of quasiparticles with one-fifth of an electron's charge. Nature, 1999, 399, 238-241.	27.8	144

#	Article	IF	Citations
199	Molecular control of a GaAs transistor. Chemical Physics Letters, 1998, 283, 301-306.	2.6	60
200	Dephasing in electron interference by a â€~which-path' detector. Nature, 1998, 391, 871-874.	27.8	449
201	Dephasing due to which path detector. Physica B: Condensed Matter, 1998, 249-251, 295-301.	2.7	6
202	Direct observation of a fractional charge. Physica B: Condensed Matter, 1998, 249-251, 395-400.	2.7	32
203	High frequency edge excitations in the quantum Hall regime. Physica B: Condensed Matter, 1998, 249-251, 435-439.	2.7	0
204	Novel magneto-resistance oscillations in short period lateral superlattices. Physica B: Condensed Matter, 1998, 249-251, 914-917.	2.7	8
205	Dynamics of charged excitons in GaAs quantum wells under high magnetic field. Physica B: Condensed Matter, 1998, 256-258, 466-469.	2.7	5
206	Charged exciton dynamics in GaAs quantum wells. Physical Review B, 1998, 58, 12637-12640.	3.2	66
207	Spatial correlation of ionized donors and its effect on scattering time and spin splitting in a two-dimensional electron gas. Physical Review B, 1997, 55, 15427-15430.	3.2	12
208	Observation of the logarithmic dispersion of high-frequency edge excitations. Physical Review B, 1997, 55, R13397-R13400.	3.2	14
209	Extremely high-mobility two dimensional electron gas: Evaluation of scattering mechanisms. Applied Physics Letters, 1997, 71, 683-685.	3.3	136
210	Suppression of Conductance in Surface Superlattices by Temperature and Electric Field. Physical Review Letters, 1997, 78, 705-708.	7.8	34
211	Direct observation of a fractional charge. Nature, 1997, 389, 162-164.	27.8	738
212	Phase measurement in a quantum dot via a double-slit interference experiment. Nature, 1997, 385, 417-420.	27.8	533
213	All-GaAs/AlGaAs readout circuit for quantum-well infrared detector focal plane array. IEEE Transactions on Electron Devices, 1997, 44, 1807-1812.	3.0	7
214	The interplay of gate potential ande–escattering in surface superlattices. Superlattices and Microstructures, 1997, 21, 137-142.	3.1	4
215	Bistability and dynamic depopulation in transport through a system of weakly coupled quantum wires. Physical Review B, 1996, 54, R5247-R5250.	3.2	3
216	Measurement of Phase and Magnitude of the Reflection Coefficient of a Quantum Dot. Physical Review Letters, 1996, 77, 4664-4667.	7.8	62

#	Article	IF	CITATIONS
217	Dephasing of ballistic electrons as a function of temperature and carrier density. Semiconductor Science and Technology, 1994, 9, 907-910.	2.0	27
218	Unexpected Periodicity in an Electronic Double Slit Interference Experiment. Physical Review Letters, 1994, 73, 3149-3152.	7.8	83
219	Low-energy electron beam lithography with 30 nm resolution. Semiconductor Science and Technology, 1993, 8, 1490-1492.	2.0	4