Olaf Czarnecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/347891/publications.pdf Version: 2024-02-01

OLAE CZARNECKI

#	Article	IF	CITATIONS
1	Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics, 2022, 23, 144.	2.8	8
2	Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. Frontiers in Plant Science, 2021, 12, 715767.	3.6	17
3	Vernalization Alters Sink and Source Identities and Reverses Phloem Translocation from Taproots to Shoots in Sugar Beet. Plant Cell, 2020, 32, 3206-3223.	6.6	30
4	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	9.3	42
5	Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. Plant Methods, 2016, 12, 16.	4.3	12
6	Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE. Plant Physiology, 2015, 167, 507-516.	4.8	38
7	High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics, 2015, 16, 24.	2.8	106
8	Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts. Molecular Plant, 2015, 8, 1237-1252.	8.3	38
9	Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in <i>Arabidopsis</i> . Journal of Proteome Research, 2014, 13, 1359-1372.	3.7	24
10	Characterization of MORE AXILLARY GROWTH Genes in Populus. PLoS ONE, 2014, 9, e102757.	2.5	23
11	A Dual Role of Strigolactones in Phosphate Acquisition and Utilization in Plants. International Journal of Molecular Sciences, 2013, 14, 7681-7701.	4.1	117
12	New insights in the topology of the biosynthesis of 5-aminolevulinic acid. Plant Signaling and Behavior, 2013, 8, e23124.	2.4	11
13	Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling. Frontiers in Plant Science, 2012, 3, 236.	3.6	41
14	LCAA, a Novel Factor Required for Magnesium Protoporphyrin Monomethylester Cyclase Accumulation and Feedback Control of Aminolevulinic Acid Biosynthesis in Tobacco Â. Plant Physiology, 2012, 160, 1923-1939.	4.8	50
15	Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 2012, 63, 1675-1687.	4.8	116
16	An <i>Arabidopsis</i> GluTR Binding Protein Mediates Spatial Separation of 5-Aminolevulinic Acid Synthesis in Chloroplasts. Plant Cell, 2011, 23, 4476-4491.	6.6	96
17	Methods for Analysis of Photosynthetic Pigments and Steady-State Levels of Intermediates of Tetrapyrrole Biosynthesis. Methods in Molecular Biology, 2011, 775, 357-385.	0.9	32
18	Rapid Dark Repression of 5-Aminolevulinic Acid Synthesis in Green Barley Leaves. Plant and Cell Physiology, 2010, 51, 670-681.	3.1	68

#	Article	IF	CITATIONS
19	Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Molecular Biology, 2009, 71, 425-436.	3.9	78
20	Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environmental Microbiology, 2006, 8, 77-87.	3.8	89
21	Isolation, characterization, and quantitative analysis of Microviridin J, a new Microcystis metabolite toxic to Daphnia. Journal of Chemical Ecology, 2003, 29, 1757-1770.	1.8	119