Handong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3478307/publications.pdf

Version: 2024-02-01

299 papers 15,798 citations

67 h-index 21540 114 g-index

307 all docs

307 docs citations

times ranked

307

17842 citing authors

#	Article	IF	CITATIONS
1	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	21.0	1,095
2	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
3	Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Letters, 2016, 16, 448-453.	9.1	494
4	Ultrathin Three-Dimensional Thermal Cloak. Physical Review Letters, 2014, 112, 054301.	7.8	340
5	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	14.6	274
6	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	8.0	274
7	Aminoâ€Mediated Anchoring Perovskite Quantum Dots for Stable and Lowâ€Threshold Random Lasing. Advanced Materials, 2017, 29, 1701185.	21.0	269
8	Hierarchical Assembly of ZnO Nanostructures on SnO ₂ Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano, 2009, 3, 3069-3076.	14.6	260
9	Advances and Prospects for Whispering Gallery Mode Microcavities. Advanced Optical Materials, 2015, 3, 1136-1162.	7.3	258
10	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	7.3	244
11	Solutionâ€Processed Low Threshold Vertical Cavity Surface Emitting Lasers from Allâ€Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2017, 27, 1605088.	14.9	242
12	TiO ₂ /(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 11956-11963.	3.1	241
13	Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Applied Physics Letters, 2010, 96, .	3.3	238
14	Room Temperature Excitonic Whispering Gallery Mode Lasing from Highâ€Quality Hexagonal ZnO Microdisks. Advanced Materials, 2011, 23, 2199-2204.	21.0	236
15	Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates. Applied Physics Letters, 2000, 77, 975.	3.3	220
16	Singlet fission in rubrene single crystal: direct observation by femtosecond pump–probe spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 8307.	2.8	203
17	Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles. Chemistry of Materials, 2014, 26, 5183-5186.	6.7	195
18	Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal. Applied Physics Letters, 1998, 73, 2287-2289.	3.3	190

#	Article	IF	CITATIONS
19	Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics, 2002, 91, 1993-1997.	2.5	186
20	Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015, 7, 8159-8165.	5.6	174
21	Stimulated Emission and Lasing from CdSe/CdS/ZnS Coreâ€Multiâ€Shell Quantum Dots by Simultaneous Threeâ€Photon Absorption. Advanced Materials, 2014, 26, 2954-2961.	21.0	172
22	Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice. Advanced Materials, 2014, 26, 5633-5638.	21.0	158
23	Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Materials, 2012, 4, e30-e30.	7.9	137
24	Solutionâ€Grown CsPbBr ₃ /Cs ₄ PbBr ₆ Perovskite Nanocomposites: Toward Temperatureâ€Insensitive Optical Gain. Small, 2017, 13, 1701587.	10.0	134
25	Dynamics of Bound Exciton Complexes in CdS Nanobelts. ACS Nano, 2011, 5, 3660-3669.	14.6	132
26	Stimulated emission induced by exciton–exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature. Applied Physics Letters, 2000, 77, 4250-4252.	3.3	131
27	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	21.0	130
28	Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi ontinuous Pumping. Advanced Materials, 2015, 27, 169-175.	21.0	127
29	Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering. Applied Physics Letters, 2010, 96, .	3.3	125
30	0.6â€W CW GalnNAs vertical external-cavity surface emitting laser operating at 1.32â€[micro sign]m. Electronics Letters, 2004, 40, 30.	1.0	123
31	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	3.0	122
32	Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets. Scientific Reports, 2013, 3, 1362.	3.3	116
33	Optical and Excitonic Properties of Crystalline ZnS Nanowires: Toward Efficient Ultraviolet Emission at Room Temperature. Nano Letters, 2010, 10, 4956-4961.	9.1	114
34	Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser and Photonics Reviews, 2013, 7, 133-139.	8.7	111
35	Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Applied Physics Letters, 2009, 94, .	3.3	106
36	Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nature Physics, 2019, 15, 347-351.	16.7	105

#	Article	IF	Citations
37	UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires. Nanotechnology, 2011, 22, 195706.	2.6	104
38	Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nature Communications, 2018, 9, 369.	12.8	103
39	Fluorescent pH Sensor Based on Ag@SiO ₂ Coreâ€"Shell Nanoparticle. ACS Applied Materials & Interfaces, 2013, 5, 5856-5860.	8.0	102
40	Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing. Optics Express, 2018, 26, 20758.	3.4	102
41	Au Nanorod Decoration on NaYF ₄ :Yb/Tm Nanoparticles for Enhanced Emission and Wavelength-Dependent Biomolecular Sensing. ACS Applied Materials & Enterfaces, 2013, 5, 3508-3513.	8.0	98
42	Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg, Zn)O multiple quantum wells. Applied Physics Letters, 2001, 78, 1979-1981.	3.3	95
43	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	21.0	95
44	Vertically Aligned Cadmium Chalcogenide Nanowire Arrays on Muscovite Mica: A Demonstration of Epitaxial Growth Strategy. Nano Letters, 2011, 11, 3051-3057.	9.1	94
45	Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. Journal of Luminescence, 2012, 132, 467-473.	3.1	93
46	Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser. Advanced Materials, 2015, 27, 2741-2746.	21.0	92
47	Advances in Alternating Current Electroluminescent Devices. Advanced Optical Materials, 2019, 7, 1801154.	7.3	92
48	Temperature dependence of excitonic absorption spectra in ZnO/Zn0.88Mg0.12O multiquantum wells grown on lattice-matched substrates. Applied Physics Letters, 2001, 78, 2464-2466.	3.3	91
49	A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1605637.	21.0	91
50	Oxygen rich <i>p</i> -type ZnO thin films using wet chemical route with enhanced carrier concentration by temperature-dependent tuning of acceptor defects. Journal of Applied Physics, 2011, 110, .	2.5	89
51	Exciton Localization and Optical Properties Improvement in Nanocrystal-Embedded ZnO Core–Shell Nanowires. Nano Letters, 2013, 13, 734-739.	9.1	85
52	Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Letters, 2017, 17, 2640-2646.	9.1	83
53	Allâ€Inorganic Metal Halide Perovskite Nanostructures: From Photophysics to Lightâ€Emitting Applications. Small Methods, 2018, 2, 1700252.	8.6	83
54	Nanocomposites of Graphene Oxide and Upconversion Rareâ€Earth Nanocrystals with Superior Optical Limiting Performance. Small, 2012, 8, 2271-2276.	10.0	79

#	Article	IF	CITATIONS
55	Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers. ACS Photonics, 2014, 1, 11-16.	6.6	79
56	Exciton-Related Photoluminescence and Lasing in CdS Nanobelts. Journal of Physical Chemistry C, 2011, 115, 12826-12830.	3.1	78
57	Selfâ€Assembled Flexible Microlasers. Advanced Materials, 2012, 24, OP60-4.	21.0	76
58	Rapid Synthesis of Sulfur Nanodots by One-Step Hydrothermal Reaction for Luminescence-Based Applications. ACS Applied Nano Materials, 2019, 2, 6622-6628.	5 . 0	76
59	Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer. Small, 2013, 9, 1052-1057.	10.0	75
60	Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing. Advanced Optical Materials, 2014, 2, 220-225.	7.3	75
61	Polarized Raman spectra of single-wall carbon nanotubes mono-dispersed in channels of AlPO 4 -5 single crystals. Solid State Communications, 1999, 109, 365-369.	1.9	74
62	Synthesis and optical properties of II–VI 1D nanostructures. Nanoscale, 2012, 4, 1422.	5 . 6	74
63	Highly Efficient Green Lightâ€Emitting Diodes from Allâ€Inorganic Perovskite Nanocrystals Enabled by a New Electron Transport Layer. Advanced Optical Materials, 2018, 6, 1800220.	7.3	74
64	Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Applied Physics Letters, 2009, 95, 061908.	3.3	73
65	Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO 4 -5 crystals. Applied Physics A: Materials Science and Processing, 1999, 69, 381-384.	2.3	70
66	Excitonic Properties and Nearâ€Infrared Coherent Random Lasing in Vertically Aligned CdSe Nanowires. Advanced Materials, 2011, 23, 1404-1408.	21.0	70
67	3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse. Nanoscale, 2014, 6, 817-824.	5.6	69
68	Fine Structure of Ultraviolet Photoluminescence of Tin Oxide Nanowires. Journal of Physical Chemistry C, 2010, 114, 3407-3410.	3.1	68
69	A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure $A \le A $	1.8	67
70	Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.	8.7	67
71	Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Applied Surface Science, 2011, 258, 890-897.	6.1	65
72	Single Mode Lasing from Hybrid Hemispherical Microresonators. Scientific Reports, 2012, 2, 244.	3.3	63

#	Article	IF	CITATIONS
73	Ï€-Conjugated Discrete Oligomers Containing Planar and Nonplanar Aromatic Motifs. Journal of the American Chemical Society, 2017, 139, 3089-3094.	13.7	63
74	Biexciton emission from ZnO/Zn0.74Mg0.26O multiquantum wells. Applied Physics Letters, 2001, 78, 3385-3387.	3. 3	61
75	Efficient Energy Transfer and Enhanced Infrared Emission in Er-Doped ZnO-SiO ₂ Composites. Journal of Physical Chemistry C, 2012, 116, 13458-13462.	3.1	61
76	Novel properties and applications of chiral inorganic nanostructures. Nano Today, 2020, 30, 100824.	11.9	61
77	Mechanism Studies on the Superior Optical Limiting Observed in Graphene Oxide Covalently Functionalized with Upconversion NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles. Small, 2012, 8, 2163-2168.	10.0	59
78	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, 1 , .	5. 3	59
79	Broadband surface-wave transformation cloak. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7635-7638.	7.1	58
80	Low-loss 13-µm GalnNAs saturable Bragg reflector for high-power picosecond neodymium lasers. Optics Letters, 2002, 27, 2124.	3.3	57
81	Synthesis, characterization and opto-electrical properties of ternary Zn ₂ SnO ₄ nanowires. Nanotechnology, 2010, 21, 465706.	2.6	57
82	Sb-Induced Phase Control of InAsSb Nanowires Grown by Molecular Beam Epitaxy. Nano Letters, 2015, 15, 1109-1116.	9.1	55
83	Controlling photonic spin Hall effect via exceptional points. Physical Review B, 2019, 100, .	3.2	55
84	Green Grinding-Coassembly Engineering toward Intrinsically Luminescent Tetracene in Cocrystals. ACS Nano, 2020, 14, 15962-15972.	14.6	54
85	Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Applied Surface Science, 2012, 258, 6373-6378.	6.1	53
86	A Novel Chiral Metasurface with Controllable Circular Dichroism Induced by Coupling Localized and Propagating Modes. Advanced Optical Materials, 2016, 4, 883-888.	7.3	53
87	Fluorescence from rubrene single crystals: Interplay of singlet fission and energy trapping. Physical Review B, 2013, 87, .	3.2	52
88	Optically pumped ultraviolet lasing from nitride nanopillars at room temperature. Applied Physics Letters, 2010, 96, .	3.3	51
89	Three-Photon-Excited Luminescence from Unsymmetrical Cyanostilbene Aggregates: Morphology Tuning and Targeted Bioimaging. ACS Nano, 2015, 9, 4796-4805.	14.6	51
90	Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy. Journal of Applied Physics, 2010, 107, 013513.	2.5	49

#	Article	IF	CITATION
91	Self-trapped exciton emission from carbon dots investigated by polarization anisotropy of photoluminescence and photoexcitation. Nanoscale, 2017, 9, 12637-12646.	5.6	49
92	Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots. Applied Physics Letters, 2013, 102, .	3.3	48
93	Multicolor lasing prints. Applied Physics Letters, 2015, 107, .	3.3	47
94	Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Applied Physics Letters, 2010, 96, .	3.3	46
95	Localized suppression of longitudinal-optical-phonon–exciton coupling in bent ZnO nanowires. Nanotechnology, 2010, 21, 445706.	2.6	46
96	A SnO ₂ Nanoparticle/Nanobelt and Si Heterojunction Light-Emitting Diode. Journal of Physical Chemistry C, 2010, 114, 18390-18395.	3.1	46
97	Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy. Chemical Communications, 2017, 53, 1680-1683.	4.1	46
98	Solvent-Assisted Surface Engineering for High-Performance All-Inorganic Perovskite Nanocrystal Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19828-19835.	8.0	45
99	Lightâ€Emitting Diodes with Cuâ€Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dualâ€Emission to White Light. Small, 2019, 15, 1901983.	10.0	45
100	Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high a \in Q microlasers. Laser and Photonics Reviews, 2015, 9, 507-516.	8.7	44
101	Surface Eu-Treated ZnO Nanowires with Efficient Red Emission. Journal of Physical Chemistry C, 2010, 114, 18081-18084.	3.1	43
102	Application of self-assembled hemispherical microlasers as gas sensors. Applied Physics Letters, 2013, 102, .	3.3	43
103	Uniaxial tensile strain and exciton–phonon coupling in bent ZnO nanowires. Applied Physics Letters, 2011, 98, 241916.	3.3	42
104	Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO:Mn nanoparticles synthesized by wet chemical method. Journal of Applied Physics, 2012, 111, .	2.5	42
105	Broadband Saturable Absorption of Graphene Oxide Thin Film and Its Application in Pulsed Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 441-447.	2.9	42
106	Second harmonic generation from the `centrosymmetric' crystals. IUCrJ, 2015, 2, 317-321.	2.2	42
107	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Progress in Quantum Electronics, 2018, 60, 1-29.	7.0	41
108	Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. NPG Asia Materials, 2019, 11, .	7.9	41

#	Article	IF	CITATIONS
109	Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells. RSC Advances, 2013, 3, 7718.	3.6	40
110	Induced Optical Chirality and Circularly Polarized Emission from Achiral CdSe/ZnS Quantum Dots via Resonantly Coupling with Plasmonic Chiral Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1800276.	8.7	40
111	Study of the cation distributions in Eu doped Sr2Y8(SiO4)6O2 by X-ray diffraction and photoluminescent spectra. Journal of Solid State Chemistry, 2010, 183, 3093-3099.	2.9	39
112	Using the Negative Hyperconjugation Effect of Pentafluorosulfanyl Acceptors to Enhance Two-Photon Absorption in Push–Pull Chromophores. Chemistry of Materials, 2018, 30, 7055-7066.	6.7	39
113	Optical investigations of GalnNAs/GaAs multi-quantum wells with low nitrogen content. Journal of Applied Physics, 2002, 92, 1380-1385.	2.5	38
114	Perovskite–Ion Beam Interactions: Toward Controllable Light Emission and Lasing. ACS Applied Materials & Controllable Light Emission and Lasing & Controllable Light & Control	8.0	38
115	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	3.1	37
116	AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Organic Electronics, 2013, 14, 3195-3200.	2.6	36
117	Phonon replicas in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics, 2002, 91, 6457.	2.5	35
118	Ultrafast spectroscopic characterization of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical anion (TCNQâ°'). Chemical Physics Letters, 2014, 609, 11-14.	2.6	35
119	Quaternary Alloy Quantum Dots: Toward Lowâ€Threshold Stimulated Emission and Allâ€Solutionâ€Processed Lasers in the Green Region. Advanced Optical Materials, 2015, 3, 652-657.	7.3	35
120	Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate. Applied Physics Letters, 2010, 97, 061911.	3.3	34
121	Rapid thermal annealing of rare earth implanted ZnO epitaxial layers. Optical Materials, 2011, 33, 1139-1142.	3.6	33
122	Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances, 2015, 5, 63080-63086.	3.6	33
123	lodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Scientific Reports, 2017, 7, 14741.	3.3	32
124	Influence of thin metal nanolayers on the photodetective properties of ZnO thin films. Journal of Applied Physics, 2009, 106, 083110.	2.5	31
125	ZnCdO/ZnO Coaxial Multiple Quantum Well Nanowire Heterostructures and Optical Properties. Journal of Physical Chemistry C, 2010, 114, 3863-3868.	3.1	31
126	Synergetically Enhanced Nearâ€Infrared Photoresponse of Reduced Graphene Oxide by Upconversion and Gold Plasmon. Small, 2014, 10, 3637-3643.	10.0	31

#	Article	IF	CITATIONS
127	An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor. Applied Physics Letters, 2016, 108, .	3.3	31
128	Two-photon-induced singlet fission in rubrene single crystal. Journal of Chemical Physics, 2013, 138, 184508.	3.0	30
129	Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing. Materials Horizons, 2014, 1, 529-534.	12.2	30
130	Single photon triggered dianion formation in TCNQ and F4TCNQ crystals. Scientific Reports, 2016, 6, 28510.	3.3	30
131	1.3â€m GalnNAs optically-pumped vertical cavity semiconductor optical amplifier. Electronics Letters, 2003, 39, 100.	1.0	29
132	Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on ($112 \hat{A}^-2$) semipolar versus (0001) polar planes. Applied Physics Letters, 2014, 104, .	3.3	29
133	Efficient Energy Transfer under Twoâ€Photon Excitation in a 3D, Supramolecular, Zn(II)â€Coordinated, Selfâ€Assembled Organic Network. Advanced Optical Materials, 2014, 2, 40-47.	7.3	29
134	Nanosecond colloidal quantum dot lasers for sensing. Optics Express, 2014, 22, 7308.	3.4	29
135	Reconfigurable Liquid Whispering Gallery Mode Microlasers. Scientific Reports, 2016, 6, 27200.	3.3	29
136	Microlasers Enabled by Softâ€Matter Technology. Advanced Optical Materials, 2019, 7, 1900057.	7.3	29
137	Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures. Chemistry of Materials, 2020, 32, 7874-7883.	6.7	29
138	Hybrid inorganic/organic microstructured light-emitting diodes produced using photocurable polymer blends. Applied Physics Letters, 2007, 90, 031116.	3.3	28
139	Two-photon-pumped stimulated emission from ZnO single crystal. Applied Physics Letters, 2011, 99, .	3.3	28
140	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells. Advanced Materials, 2022, 34, e2108884.	21.0	28
141	Investigation of Structured Green-Band Emission and Electronâ [*] Phonon Interactions in Vertically Aligned ZnO Nanowires. Journal of Physical Chemistry C, 2010, 114, 17889-17893.	3.1	27
142	Thermal quenching mechanism of photoluminescence in 1.55ν m GalnNAsSb∕Ga(N)As quantum-well structures. Applied Physics Letters, 2006, 89, 101909.	3.3	26
143	Nitrogen doping in pulsed laser deposited ZnO thin films using dense plasma focus. Applied Surface Science, 2011, 257, 1979-1985.	6.1	26
144	Concise Synthesis and Twoâ€Photonâ€Excited Deepâ€Blue Emission of 1,8â€Diazapyrenes. Chemistry - an Asian Journal, 2012, 7, 2090-2095.	3.3	26

#	Article	IF	Citations
145	Exciting Dilute Magnetic Semiconductor: Copper-Doped ZnO. Journal of Superconductivity and Novel Magnetism, 2013, 26, 187-195.	1.8	26
146	Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics, 2013, 2, 153-160.	6.0	26
147	Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure. Applied Physics Letters, 2015, 106, .	3.3	26
148	Biocompatible Twoâ€Photon Absorbing Dipyridyldiketopyrrolopyrroles for Metalâ€Ionâ€Mediated Selfâ€Assembly Modulation and Fluorescence Imaging. Advanced Optical Materials, 2016, 4, 746-755.	7.3	26
149	Electrical transport properties of mono-dispersed single-wall carbon nanotubes formed in channels of zeolite crystal. Physica B: Condensed Matter, 2000, 279, 200-203.	2.7	25
150	Optical transitions in GalnNAs/GaAs multi-quantum wells with varying N content investigated by photoluminescence excitation spectroscopy. Applied Physics Letters, 2003, 82, 376-378.	3.3	25
151	Optical characteristics of $1.55\hat{l}\frac{1}{4}$ m GalnNAs multiple quantum wells. Applied Physics Letters, 2004, 85, 4013-4015.	3.3	25
152	GalnNAs/GaAs Bragg-mirror-based structures for novel 1.3ξm device applications. Journal of Crystal Growth, 2004, 268, 457-465.	1.5	25
153	Enhanced Optical Nonlinearity in Noncovalently Functionalized Amphiphilic Graphene Composites. ChemPlusChem, 2012, 77, 688-693.	2.8	24
154	Enhanced ferromagnetic response in ZnO:Mn thin films by tailoring composition and defect concentration. Journal of Magnetism and Magnetic Materials, 2013, 344, 171-175.	2.3	24
155	Evidence of ultra-low-k dielectric material degradation and nanostructure alteration of the Cu/ultra-low-k interconnects in time-dependent dielectric breakdown failure. Applied Physics Letters, 2013, 102, .	3.3	24
156	Poly(Acrylic Acid) apped and Dye‣oaded Graphene Oxideâ€Mesoporous Silica: A Nanoâ€6andwich for Twoâ€Photon and Photoacoustic Dualâ€Mode Imaging. Particle and Particle Systems Characterization, 2014, 31, 1060-1066.	2.3	24
157	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5 . 6	24
158	Visible-light photoresponse in a hollow microtube–nanowire structure made of carbon-doped ZnO. CrystEngComm, 2012, 14, 2886.	2.6	23
159	Large Twoâ€Photon Absorption of Terpyridineâ€Based Quadrupolar Derivatives: Towards their Applications in Optical Limiting and Biological Imaging. Chemistry - an Asian Journal, 2013, 8, 564-571.	3.3	23
160	Large in-plane asymmetric spin angular shifts of a light beam near the critical angle. Optics Letters, 2019, 44, 207.	3.3	23
161	Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1287.	2.1	22
162	Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes. Applied Physics Letters, 2017, 110, .	3.3	22

#	Article	IF	Citations
163	Simultaneous implementation of enhanced resolution and large dynamic range for fiber temperature sensing based on different optical transmission mechanisms. Optics Express, 2018, 26, 18341.	3.4	22
164	Characterization of selective quantum well intermixing in 1.3 \hat{l}_4 m GalnNAs/GaAs structures. Journal of Applied Physics, 2003, 94, 1550-1556.	2.5	21
165	Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. Applied Physics Letters, 2019, 115, .	3.3	21
166	Compact optical waveguide coupler using homogeneous uniaxial medium. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2633.	2.1	20
167	Nanoscale semiconductor–insulator–metal core/shell heterostructures: facile synthesis and light emission. Nanoscale, 2011, 3, 3170.	5.6	20
168	Fabrication and spectroscopic characterization of Ce3+ doped Sr2Y8(SiO4)6O2 translucent ceramics. Optical Materials, 2012, 34, 1155-1160.	3.6	20
169	Multiphoton Harvesting in an Angular Carbazole-Containing Zn(II)-Coordinated Random Copolymer Mediated by Twisted Intramolecular Charge Transfer State. Macromolecules, 2014, 47, 1316-1324.	4.8	20
170	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	2.8	20
171	Quantum well intermixing in GalnNAs/GaAs structures. Journal of Applied Physics, 2003, 94, 7581.	2.5	19
172	Long-wavelength monolithic GalnNAs vertical-cavity optical amplifiers. IEEE Journal of Quantum Electronics, 2004, 40, 878-883.	1.9	19
173	Temperature dependence of weak localization effects of excitons in ZnCdO/ZnO single quantum well. Journal of Applied Physics, 2011, 109, .	2.5	19
174	Exciton-Enabled Meta-Optics in Two-Dimensional Transition Metal Dichalcogenides. Nano Letters, 2020, 20, 7964-7972.	9.1	19
175	Surface-plasmon enhancement of band gap emission from ZnCdO thin films by gold particles. Applied Physics Letters, 2010, 97, 061104.	3.3	18
176	Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode. Optics Express, 2011, 19, 13598.	3.4	18
177	Effect of Zn(O,S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Solar Energy, 2015, 115, 396-404.	6.1	18
178	Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating. IEEE Photonics Technology Letters, 2006, 18, 1786-1788.	2.5	17
179	Photoluminescence properties of midinfrared dilute nitride InAsN epilayers with/without Sb flux during molecular beam epitaxial growth. Applied Physics Letters, 2009, 95, .	3.3	17
180	Photoluminescence characteristics of ZnCdO/ZnO single quantum well grown by pulsed laser deposition. Applied Physics Letters, 2011, 98, 121903.	3.3	17

#	Article	IF	CITATIONS
181	Temperature dependent photoluminescence studies of ZnO thin film grown on (111) YSZ substrate. Journal of Crystal Growth, 2011, 319, 8-12.	1.5	17
182	Wavelength dependence of optical nonlinearity of terpyridine-based Zn(II)-coordinated rigid linear polymers. Applied Physics Letters, 2012, 101, 213302.	3.3	17
183	NaYF ₄ :Yb,Er–MoS ₂ : from synthesis and surface ligand stripping to negative infrared photoresponse. Chemical Communications, 2015, 51, 9030-9033.	4.1	17
184	Study of Complex Optical Constants of Neat Cadmium Selenide Nanoplatelets Thin Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry Letters, 2021, 12, 191-198.	4.6	17
185	Temperature dependence of excitonic energy in isolated Se chains formed in channels of AlPO4-5 crystals. Applied Physics Letters, 1997, 71, 2457-2459.	3.3	16
186	Exciton Related Stimulated Emission in ZnO-Based Multiple-Quantum Wells. Physica Status Solidi A, 2002, 192, 14-20.	1.7	16
187	A three-photon probe with dual emission colors for imaging of Zn(<scp>ii</scp>) ions in living cells. Chemical Communications, 2014, 50, 14378-14381.	4.1	16
188	Symmetries of the eigenstates in an anisotropic photonic crystal. Physical Review B, 2008, 77, .	3.2	15
189	Vibrational spectroscopy of low-k/ultra-low-k dielectric materials on patterned wafers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	15
190	Organic light-emitting diodes with a spacer enhanced exciplex emission. Applied Physics Letters, 2014, 104, .	3.3	15
191	Superior optical nonlinearity of an exceptional fluorescent stilbene dye. Applied Physics Letters, 2015, 106, .	3.3	15
192	All-organic luminescent nanodots from corannulene and cyclodextrin nano-assembly: continuous-flow synthesis, non-linear optical properties, and bio-imaging applications. Materials Chemistry Frontiers, 2017, 1, 831-837.	5.9	15
193	Fast Dynamic Visualizations in Microfluidics Enabled by Fluorescent Carbon Nanodots. Small, 2017, 13, 1700869.	10.0	14
194	Simultaneously precise estimations of phase and amplitude variations based on weak-value amplification. Applied Physics Letters, 2019, 114, .	3.3	14
195	Role of Sb in the growth and optical properties of $1.55\hat{1}$ /4m GalnN(Sb)Asâ $$ -GaNAs quantum-well structures by molecular-beam epitaxy. Applied Physics Letters, 2005, 87, 181908.	3.3	13
196	Ferromagnetism in ZnCoO thin films deposited byÂPLD. Applied Physics A: Materials Science and Processing, 2010, 101, 717-722.	2.3	13
197	C-band emission from GalnNAsSb VCSEL on GaAs. Electronics Letters, 2006, 42, 29.	1.0	12
198	Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 2772-2778.	4.6	12

#	Article	IF	CITATIONS
199	Exciton energy recycling from ZnO defect levels: towards electrically driven hybrid quantum-dot white light-emitting-diodes. Nanoscale, 2016, 8, 5835-5841.	5.6	12
200	11-fs dark pulses generated via coherent absorption in plasmonic metamaterial. Optics Express, 2017, 25, 22620.	3.4	12
201	Surface plasmon induced exciton redistribution in ZnCdO/ZnO coaxial multiquantum-well nanowires. Applied Physics Letters, 2010, 97, .	3.3	11
202	Infrared emission properties and energy transfer in ZnO–SiO2:Yb3+ composites. Journal of Alloys and Compounds, 2011, 509, 7794-7797.	5.5	11
203	Radiation-Suppressed plasmonic open resonators designed by nonmagnetic transformation optics. Scientific Reports, 2012, 2, 784.	3.3	11
204	A Threeâ€Photon Active Organic Fluorophore for Deep Tissue Ratiometric Imaging of Intracellular Divalent Zinc. Chemistry - an Asian Journal, 2016, 11, 1523-1527.	3.3	11
205	Pump Wavelength Dependence of Photodarkening in Yb-Doped Fibers. Journal of Lightwave Technology, 2017, 35, 2535-2540.	4.6	11
206	A FriedlAnder route to 5,7-diazapentacenes. Journal of Materials Chemistry C, 2018, 6, 3715-3721.	5.5	11
207	Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance. Journal of Materials Chemistry C, 2018, 6, 7311-7316.	5.5	11
208	Simulation of gain and modulation bandwidths of 1300â€nm RWG InGaAsN lasers. IEE Proceedings: Optoelectronics, 2003, 150, 80.	0.8	10
209	Selective modification of band gap in GalnNAs/GaAs structures by quantum-well intermixing. Applied Physics Letters, 2003, 82, 4259-4261.	3.3	10
210	Femtosecond pulse generation around 1500nm using a GalnNAsSb SESAM. Optics Express, 2008, 16, 18739.	3.4	10
211	Growth of Vertically Aligned InGaN Nanorod Arrays on <i>p</i> -Type Si Substrates for Heterojunction Diodes. Journal of Nanoscience and Nanotechnology, 2010, 10, 8139-8144.	0.9	10
212	Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications. Optics Express, 2017, 25, 2618.	3.4	10
213	Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser. Scientific Reports, 2019, 9, 17017.	3.3	10
214	Manipulation of the Optical Properties of Colloidal 2D CdSe Nanoplatelets. Advanced Photonics Research, 2021, 2, 2100045.	3.6	10
215	Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100860.	5.6	10
216	Conductance of mono-sized carbon nanotubes in channels of zeolite crystal. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 255-257.	2.3	9

#	Article	IF	CITATIONS
217	Investigation of phase-separated electronic states in 1.5 \hat{l} 4m GalnNAs \hat{a} -GaAs heterostructures by optical spectroscopy. Journal of Applied Physics, 2005, 97, 033517.	2.5	9
218	GalnNAs(Sb) surface normal devices. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 85-92.	1.8	9
219	Influence of Hâ€Bonding on Selfâ€Assembly and Tunable Dualâ€Emission of Carbazoleâ€Based Zn(II)â€Terpyridin Metallocycles. Macromolecular Chemistry and Physics, 2014, 215, 753-762.	e 2.2	9
220	Significant enhancement of UV emission in ZnO nanorods subject to Ga+ ion beam irradiation. Nano Research, 2015, 8, 1857-1864.	10.4	9
221	Ferromagnetic signature in vanadium doped ZnO thin films grown by pulsed laser deposition. Journal of Materials Research, 2016, 31, 3223-3229.	2.6	9
222	Temperature-dependent stoichiometric alteration in ZnO:Mn nanostructured thin films for enhanced ferromagnetic response. Applied Surface Science, 2016, 387, 461-468.	6.1	9
223	Observation of Net Stimulated Emission in CsPbBr ₃ Thin Films Prepared by Pulsed Laser Deposition. Advanced Optical Materials, 2021, 9, 2100564.	7.3	9
224	Surface Depletion Effects in Bromide-Ligated Colloidal Cadmium Selenide Nanoplatelets: Toward Efficient Emission at High Temperature. Journal of Physical Chemistry Letters, 2021, 12, 9086-9093.	4.6	9
225	Mono-dispersed single-wall carbon nanotubes formed in channels of zeolite crystal: Production, optical and electrical transport properties. Bulletin of Materials Science, 1999, 22, 329-333.	1.7	8
226	Quantum-well intermixing influence on GalnNAs/GaAs quantum-well laser gain: theoretical study. Semiconductor Science and Technology, 2008, 23, 095010.	2.0	8
227	Interband optical transitions of an InAs/InGaAs dots-in-a-well structure. Solid State Communications, 2010, 150, 707-710.	1.9	8
228	Effect of excimer laser annealing on the silicon nanocrystals embedded in silicon-rich silicon nitride film. Applied Physics A: Materials Science and Processing, 2012, 106, 251-255.	2.3	8
229	Amorphous KNbO3 thin films with ferroelectriclike properties. Applied Physics Letters, 1997, 70, 164-166.	3.3	7
230	Observation of Biexciton Emission in ZnO/ZnMgO Multi-Quantum Wells. Physica Status Solidi (B): Basic Research, 2002, 229, 867-870.	1.5	7
231	Influence of composition diffusion on the band structures of InGaNAs∕GaAs quantum wells investigated by the band-anticrossing model. Applied Physics Letters, 2005, 87, 231112.	3.3	7
232	Silver nanoparticle facilitated charge generation in tandem organic light-emitting devices. Applied Physics Letters, 2013, 102, .	3.3	7
233	Novel Periodic Bilayer Au Nanostructures for Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials Interfaces, 2018, 5, 1800820.	3.7	7
234	Effect of multilayer barriers on the optical properties of GalnNAs single quantum-well structures grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2005, 87, 021903.	3.3	6

#	Article	IF	CITATIONS
235	High temperature ferromagnetic ordering in c-axis oriented ZnO:Mn nanoparticle thin films by tailoring substrate temperature. International Journal of Modern Physics Conference Series, 2014, 32, 1460341.	0.7	6
236	Infrared response of granular YBCO superconducting films. Solid State Communications, 1994, 89, 535-537.	1.9	5
237	Photophysical investigation of charge recombination in CdS/ZnO layers of CuIn(S,Se) < sub>2 < /sub> solar cell. RSC Advances, 2014, 4, 58372-58376.	3.6	5
238	Manipulating Optical Properties of ZnO/Ga:ZnO Core–Shell Nanorods Via Spatially Tailoring Electronic Bandgap. Advanced Optical Materials, 2015, 3, 1066-1071.	7.3	5
239	High performance 2.2 μm optically-pumped vertical external-cavity surface-emitting laser. Journal of Modern Optics, 2007, 54, 1677-1683.	1.3	4
240	Activation of phosphorous doping in high quality ZnO thin film grown on Yttria-stabilized zirconia (1) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf
241	Lasers: Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing (Advanced Optical Materials 3/2014). Advanced Optical Materials, 2014, 2, 200-200.	7.3	4
242	Quenching of the relaxation pathway in the Weyl semimetal TaAs. Physical Review B, 2020, 102, .	3.2	4
243	Breath figureâ€derived porous fluorineâ€containing poly(ether sulfone) membranes with low dielectric constant. Polymer International, 2021, 70, 1456-1464.	3.1	4
244	Narrow electroluminescence in bromide ligand-capped cadmium chalcogenide nanoplatelets. Applied Physics Letters, 2022, 120, .	3.3	4
245	Effects of rapid thermal annealing on the optical properties of low-loss 1.3μm GalnNAs∕GaAs saturable Bragg reflectors. Journal of Applied Physics, 2004, 96, 1418-1424.	2.5	3
246	1.3-μm GalnNAs surface-normal devices. IEE Proceedings: Optoelectronics, 2004, 151, 442-446.	0.8	3
247	Photoluminescence characterization of midinfrared InNxAs1â^'x/In0.53Ga0.47Asâ^•InP multiquantum wells with various N contents. Applied Physics Letters, 2005, 87, 081908.	3.3	3
248	Fabrication and Photoluminescence Properties of Graphite Fiber/ZnO Nanorod Core–Shell Structures. Journal of Nanoscience and Nanotechnology, 2011, 11, 6934-6939.	0.9	3
249	Imaging: Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice (Adv.) Tj ETQq1	1 ₂ 0.78431	l4g rgBT /C∨
250	An improved polymer solar cell incorporating single-wall carbon nanotubes. Journal of Modern Optics, 2014, 61, 1761-1766.	1.3	3
251	Effect of Size on the Electronic Structure and Optical Properties of Cubic CsPbBr ₃ Quantum Dots. IEEE Journal of Quantum Electronics, 2020, 56, 1-7.	1.9	3
252	Tunable ultraviolet to deep blue light emission from sulfur nanodots fabricated by a controllable fission-aggregation strategy. Science China Materials, 0, , .	6.3	3

#	Article	IF	Citations
253	<title>Optically pumped stimulated emission in ZnO/ZnMgO multiple quantum wells prepared by combinatorial techniques</title> ., 2001,,.		2
254	Selective modification of the band gaps of GalnNas/GaAs structures by quantum well intermixing techniques. Materials Science and Engineering C, 2003, 23, 983-987.	7. 3	2
255	Investigations of $1.55 \cdot \hat{l} \frac{1}{4}$ m GalnNAs/GaAs heterostructures by optical spectroscopy. IEE Proceedings: Optoelectronics, 2004, 151, 331-334.	0.8	2
256	Spectroscopic characterization of $1.3\hat{l}\frac{1}{4}$ m GalnNAs quantum-well structures grown by metal-organic vapor phase epitaxy. Applied Physics Letters, 2005, 86, 092106.	3.3	2
257	Fourier Transform Infrared Spectroscopy of Low-\$k\$ Dielectric Material on Patterned Wafers. Japanese Journal of Applied Physics, 2012, 51, 111501.	1.5	2
258	Waveguide design and application with transformation optics. Science China Information Sciences, 2013, 56, 1-11.	4.3	2
259	Nonlinear Optics: Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network (Advanced Optical Materials 1/2014). Advanced Optical Materials, 2014, 2, 39-39.	7.3	2
260	Upconversion Lasers: Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2678-2678.	21.0	2
261	Unusual Fluorescent Properties of Stilbene Units and CdZnS/ZnS Quantum Dots Nanocomposites: Whiteâ€Light Emission in Solution versus Lightâ€Harvesting in Films. Macromolecular Chemistry and Physics, 2016, 217, 24-31.	2.2	2
262	Different characteristics of high-temperature superconducting infrared detectors with granular and epitaxial films. Journal of Infrared, Millimeter and Terahertz Waves, 1993, 14, 265-272.	0.6	1
263	Photoluminescence properties of dilute nitride lnNAs/luGaAsIlnP multi-quantum wells for mid-infrared applications., 0,,.		1
264	Characterization of MOVPE-grown GalnNAs quantum well with multi-barriers by Z-contrast imaging and SIMS. Journal of Crystal Growth, 2006, 287, 620-624.	1.5	1
265	Self-starting femtosecond Cr4+:YAG laser mode locked with a GalnNAs saturable Bragg reflector. , 2007, , .		1
266	Carrier Relaxation in InAs/InGaAs Dots-in-a-Well Structures. Japanese Journal of Applied Physics, 2010, 49, 020203.	1.5	1
267	Development of <scp><scp>ZnO</scp></scp> Nanostructured Films via Sodium Chloride Solution and Investigation of Its Growth Mechanism and Optical Properties. Journal of the American Ceramic Society, 2013, 96, 1972-1977.	3.8	1
268	Flexible microresonators: lasing and sensing. , 2014, , .		1
269	Transformation cloaks for surface electromagnetic waves. , 2015, , .		1
270	Quantum Dots: Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 168-168.	21.0	1

#	Article	IF	Citations
271	Integrated closed-loop cavity of a tunable laser. Applied Physics Letters, 2016, 109, 151105.	3.3	1
272	Tackling the hurdles of electrically pumped colloidal quantum dot lasers. Science China Materials, 2018, 61, 765-766.	6.3	1
273	High Power, Continuous Wave Operation of a Vertical External Cavity Surface Emitting Laser at 674nm., 2005,,.		1
274	Coherent Random lasing from CdSe/CdS/ZnS quantum dots. , 2013, , .		1
275	Fourier Transform Infrared Spectroscopy of Low-kDielectric Material on Patterned Wafers. Japanese Journal of Applied Physics, 2012, 51, 111501.	1.5	1
276	Unraveling the Temperature Dependent Interband Transitions, Intrinsic Exciton Resonances and Complex Dielectric Constants of All-inorganic Perovskites for Next-generation Optoelectronics. , 2019, , .		1
277	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	21.0	1
278	<code><title>Well-width</code> dependence of exciton-phonon coupling strength in ZnO/(Mg,Zn)O multiple quantum wells grown by combinatorial laser molecular beam epitaxy</title>., 2001,,.</code>		0
279	High-power picosecond quasiCW 1.3 \hat{l} /4m Nd-lasers passively modelocked using novel low-loss GalnNAs SBRs. , 0, , .		0
280	$1.3~{\hat l}$ 4m CW GalnNAs VCSEL giving 4.1 mW single transverse mode power. , 0, , .		0
281	1.55-/spl mu/m GalnNAs/GaAs multiple quantum wells with GalnNAs quaternary barrier and space layer. , 2004 , , .		0
282	Photoluminescence characteristics of 1.5- $\hat{1}$ /4m Ga1-xInxNyAs1-y/GaAs structures grown by molecular beam epitaxy. Applied Physics A: Materials Science and Processing, 2005, 80, 9-12.	2.3	0
283	Influence of strain-compensating and strain mediating layers on the optical properties of MOVPE-grown GalnNAs single quantum-well structures. , 0, , .		0
284	Spectral Narrowing and Locking of Vertical External-cavity Surface-emitting Lasers Using a Volume Bragg Grating. , 2006, , .		0
285	Femtosecond pulse generation at 1530nm using a GalnNAsSb SESAM. , 2008, , .		0
286	The effects of rapid annealing and passivation of co-sputtered erbium doped sirich oxide/SiO <inf>2</inf> superlattice structures., 2010,,.		0
287	Microcavity effects in SiGe/Si heterogeneous nanostructures prepared by electrochemical anodization of SiGe/Si multiple quantum wells. Journal of Applied Physics, 2011, 110, 103101.	2.5	O
288	Design and fabrication of dielectric nanostructured bending adaptor for optical frequencies. , 2012, , .		0

#	Article	IF	CITATIONS
289	Optical and Excitonic Properties of Crystalline ZnS Nanowires. , 2013, , 453-483.		O
290	Flexible optical microcavities and their sensing application. , 2013, , .		0
291	Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods. , 2014, , .		0
292	Multi-photon Excited Amplified Spontaneous Emission and Lasing from CdSe/CdS/ZnS quantum dots., 2014,,.		0
293	Tuning liquid whispering gallery mode microlasers by surface tension. , 2016, , .		0
294	Enabling seamless investigation of fast and complex flow fields in microfluidics via metal lead halide perovskite based micro-particles. Applied Materials Today, 2020, 20, 100736.	4.3	0
295	Affine Transformational Optics. , 2011, , .		0
296	Microlaser from Self-Assembled Hemispherical Resonator. , 2012, , .		0
297	Affine Nonmagnetic Transformation Design and its Application. , 2012, , .		0
298	Rationally Engineered Core-Shell Colloidal Quantum Dots for Low Threshold Lasers. , 2015, , .		0
299	Switching between excitonic emission and carrier depletion by surface defects in inorganic lead halide perovskites., 2019,,.		О