## M Alejandra Tortorici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3477627/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, 181, 281-292.e6.                                                                                                                         | 13.5 | 6,979     |
| 2  | Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 2020, 182, 1295-1310.e20.                                                                                  | 13.5 | 1,726     |
| 3  | Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.                                                                                                                          | 13.7 | 1,695     |
| 4  | Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.                                                      | 13.5 | 1,195     |
| 5  | N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.                                                                                                              | 13.5 | 784       |
| 6  | Structural insights into coronavirus entry. Advances in Virus Research, 2019, 105, 93-116.                                                                                                                                       | 0.9  | 669       |
| 7  | Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.                                                                                                                               | 13.7 | 648       |
| 8  | Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses, 2020, 12, 513.                                                                                     | 1.5  | 641       |
| 9  | Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.                                                                                                              | 13.5 | 558       |
| 10 | Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science,<br>2020, 370, 950-957.                                                                                                       | 6.0  | 504       |
| 11 | Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11157-11162.                         | 3.3  | 501       |
| 12 | Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural and<br>Molecular Biology, 2019, 26, 481-489.                                                                                       | 3.6  | 475       |
| 13 | Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature, 2016, 531, 114-117.                                                                                                                       | 13.7 | 453       |
| 14 | SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science, 2021, 373, 648-654.                                                                                                                                | 6.0  | 385       |
| 15 | SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.                                                                                                                             | 13.7 | 385       |
| 16 | Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nature Structural and Molecular Biology, 2016, 23, 899-905.                                                               | 3.6  | 366       |
| 17 | Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517. | 3.3  | 272       |
| 18 | Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.                                                                                                                     | 6.0  | 262       |

M Alejandra Tortorici

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.                                                                                          | 13.7 | 220       |
| 20 | Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nature Structural and Molecular Biology, 2019, 26, 1151-1157.                                | 3.6  | 218       |
| 21 | Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 2021, 28, 478-486.                                                                     | 3.6  | 152       |
| 22 | The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein. Cell, 2017, 168, 904-915.e10.                                                                                 | 13.5 | 151       |
| 23 | Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1.<br>Structure, 2008, 16, 1678-1688.                                                         | 1.6  | 148       |
| 24 | Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.                                              | 13.5 | 131       |
| 25 | Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric<br>Infections. Journal of Virology, 2018, 92, .                                    | 1.5  | 124       |
| 26 | Rotavirus Genome Replication and Morphogenesis: Role of the Viroplasm. , 2006, 309, 169-187.                                                                                           |      | 96        |
| 27 | Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature, 2013, 493, 552-556.                                                                | 13.7 | 91        |
| 28 | ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.                                                        | 6.0  | 85        |
| 29 | A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science, 2017, 358, 663-667.                                               | 6.0  | 66        |
| 30 | Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc. PLoS Pathogens, 2016, 12, e1005813.           | 2.1  | 66        |
| 31 | Template Recognition and Formation of Initiation Complexes by the Replicase of a Segmented Double-stranded RNA Virus. Journal of Biological Chemistry, 2003, 278, 32673-32682.         | 1.6  | 61        |
| 32 | A Druggable Pocket at the Nucleocapsid/Phosphoprotein Interaction Site of Human Respiratory<br>Syncytial Virus. Journal of Virology, 2015, 89, 11129-11143.                            | 1.5  | 56        |
| 33 | Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus<br>Research, 2001, 73, 41-55.                                                       | 1.1  | 49        |
| 34 | A base-specific recognition signal in the 5' consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. Rna, 2006, 12, 133-146. | 1.6  | 45        |
| 35 | Rotavirus Glycoprotein NSP4 Is a Modulator of Viral Transcription in the Infected Cell. Journal of Virology, 2005, 79, 15165-15174.                                                    | 1.5  | 42        |
| 36 | Coupling of Rotavirus Genome Replication and Capsid Assembly. Advances in Virus Research, 2006, 69, 167-201.                                                                           | 0.9  | 41        |

M Alejandra Tortorici

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Autocatalytic Cleavage within Classical Swine Fever Virus NS3 Leads to a Functional Separation of Protease and Helicase. Journal of Virology, 2013, 87, 11872-11883.                                                     | 1.5  | 31        |
| 38 | Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryoâ€electron microscopy. Protein Science, 2017, 26, 113-121.                                                                    | 3.1  | 31        |
| 39 | Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.                                                                            | 13.5 | 25        |
| 40 | A positive-strand RNA virus uses alternative protein-protein interactions within a viral<br>protease/cofactor complex to switch between RNA replication and virion morphogenesis. PLoS<br>Pathogens, 2017, 13, e1006134. | 2.1  | 21        |
| 41 | Cell-line-induced mutation of the rotavirus genome alters expression of an IRF3-interacting protein.<br>EMBO Journal, 2004, 23, 4072-4081.                                                                               | 3.5  | 17        |
| 42 | Rotavirus NSP2 interferes with the core lattice protein VP2 in initiation of minus-strand synthesis. Virology, 2003, 313, 261-273.                                                                                       | 1.1  | 12        |
| 43 | X-Ray Structure of the Pestivirus NS3 Helicase and Its Conformation in Solution. Journal of Virology, 2015, 89, 4356-4371.                                                                                               | 1.5  | 11        |
| 44 | Expression and Purification of Z Protein from JunÃn Virus. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-14.                                                                                                   | 3.0  | 4         |
| 45 | Structural Studies of Coronavirus Fusion Proteins. Microscopy and Microanalysis, 2019, 25, 1300-1301.                                                                                                                    | 0.2  | 4         |