## **Dimiter S Dimitrov**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476608/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A highly-specific fully-human antibody and CAR-T cells targeting CD66e/CEACAM5 are cytotoxic for CD66e-expressing cancer cells in vitro and in vivo. Cancer Letters, 2022, 525, 97-107.                                                  | 7.2  | 12        |
| 2  | Inhibitory monoclonal antibody targeting ADAM17 expressed on cancer cells. Translational Oncology, 2022, 15, 101265.                                                                                                                     | 3.7  | 8         |
| 3  | Design of a Novel Fab‣ike Antibody Fragment with Enhanced Stability and Affinity for Clinical use.<br>Small Methods, 2022, 6, 2100966.                                                                                                   | 8.6  | 1         |
| 4  | Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nature Communications, 2022, 13, 742.                                                                                    | 12.8 | 71        |
| 5  | An insulin growth factor-I/II-neutralizing monoclonal antibody in combination with epidermal<br>growth factor receptor inhibitors potently inhibits tumor cell growth. Journal of Cancer, 2022, 13,<br>1830-1836.                        | 2.5  | 3         |
| 6  | Construction of a Large Size Human Immunoglobulin Heavy Chain Variable (VH) Domain Library,<br>Isolation and Characterization of Novel Human Antibody VH Domains Targeting PD-L1 and CD22.<br>Frontiers in Immunology, 2022, 13, 869825. | 4.8  | 8         |
| 7  | Functional reconstitution of the MERS CoV receptor binding motif. Molecular Immunology, 2022, 145, 3-16.                                                                                                                                 | 2.2  | 2         |
| 8  | Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be<br>Reprogrammed with Folate-Targeted Drugs. Cancer Research, 2021, 81, 671-684.                                                             | 0.9  | 39        |
| 9  | Trispecific CD19-CD20-CD22–targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors<br>in preclinical models. Science Translational Medicine, 2021, 13, .                                                                  | 12.4 | 77        |
| 10 | Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. PLoS Biology, 2021, 19, e3001237.                                                                   | 5.6  | 171       |
| 11 | Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 2021, 11, 2884-2903.                                                                                      | 9.4  | 51        |
| 12 | The reduced form of the antibody CH2 domain. Protein Science, 2021, 30, 1895-1903.                                                                                                                                                       | 7.6  | 1         |
| 13 | Abstract 1545: Development of FGFR4-targeted chimeric antigen receptors (CARs) for the treatment of rhabdomyosarcoma. , 2021, , .                                                                                                        |      | Ο         |
| 14 | A GPC2 antibody-drug conjugate is efficacious against neuroblastoma and small-cell lung cancer via binding a conformational epitope. Cell Reports Medicine, 2021, 2, 100344.                                                             | 6.5  | 14        |
| 15 | Abstract 1546: Defining the immune microenvironment in Ewing's sarcoma to potentiate<br>IL1RAP-targeted CAR-T immunotherapy. , 2021, , .                                                                                                 |      | Ο         |
| 16 | Structural details of monoclonal antibody m971 recognition of the membrane-proximal domain of CD22. Journal of Biological Chemistry, 2021, 297, 100966.                                                                                  | 3.4  | 7         |
| 17 | Antibody–Drug Conjugate Efficacy in Neuroblastoma: Role of Payload, Resistance Mechanisms, Target<br>Density, and Antibody Internalization. Molecular Cancer Therapeutics, 2021, 20, 2228-2239                                           | 4.1  | 8         |
| 18 | Effective killing of cells expressing CD276 (B7-H3) by a bispecific T cell engager based on a new fully human antibody. Translational Oncology, 2021, 14, 101232.                                                                        | 3.7  | 6         |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Developability Assessment of an Isolated C <sub>H</sub> 2 Immunoglobulin Domain. Analytical<br>Chemistry, 2021, 93, 1342-1351.                                                                                                                                                | 6.5  | 6         |
| 20 | Human Antibody Domains and Fragments Targeting Neutrophil Elastase as Candidate Therapeutics for<br>Cancer and Inflammation-Related Diseases. International Journal of Molecular Sciences, 2021, 22, 11136.                                                                   | 4.1  | 7         |
| 21 | Immune Modulating Antibody–Drug Conjugate (IM-ADC) for Cancer Immunotherapy. Journal of<br>Medicinal Chemistry, 2021, 64, 15716-15726.                                                                                                                                        | 6.4  | 35        |
| 22 | Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding. Cell Reports, 2021, 37, 110156.                                                                                                           | 6.4  | 67        |
| 23 | An engineered human IgG1 CH2 domain with decreased aggregation and nonspecific binding. MAbs, 2020, 12, 1689027.                                                                                                                                                              | 5.2  | 7         |
| 24 | High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 2020, 183, 429-441.e16.                                                                                                                                                                         | 28.9 | 100       |
| 25 | Enhanced elicitation of potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice. Vaccine, 2020, 38, 7205-7212.                                                                                                               | 3.8  | 31        |
| 26 | Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three<br>animal models of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United<br>States of America, 2020, 117, 29832-29838.                       | 7.1  | 81        |
| 27 | Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade. Science<br>Translational Medicine, 2020, 12, .                                                                                                                                          | 12.4 | 34        |
| 28 | Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting<br>the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase<br>1 study. Lancet Infectious Diseases, The, 2020, 20, 445-454. | 9.1  | 60        |
| 29 | Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo<br>elimination of HIV-infected cells in a humanized mouse model. Science Translational Medicine, 2019, 11,                                                                 | 12.4 | 104       |
| 30 | Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute<br>Phase of Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2019, 93, .                                                                               | 3.4  | 8         |
| 31 | A broadly neutralizing germline-like human monoclonal antibody against dengue virus envelope<br>domain III. PLoS Pathogens, 2019, 15, e1007836.                                                                                                                               | 4.7  | 32        |
| 32 | Engineering a Novel Antibody-Peptide Bispecific Fusion Protein Against MERS-CoV. Antibodies, 2019, 8,<br>53.                                                                                                                                                                  | 2.5  | 8         |
| 33 | Human Domain Antibodies to Conserved Epitopes on HER2 Potently Inhibit Growth of HER2-Overexpressing Human Breast Cancer Cells In Vitro. Antibodies, 2019, 8, 25.                                                                                                             | 2.5  | 10        |
| 34 | A defucosylated bispecific multivalent molecule exhibits broad HIV-1-neutralizing activity and<br>enhanced antibody-dependent cellular cytotoxicity against reactivated HIV-1 latently infected cells.<br>Aids, 2018, 32, 1749-1761.                                          | 2.2  | 11        |
| 35 | CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.                                                                                                                          | 30.7 | 1,030     |
| 36 | Engineered antibody CH2 domains binding to nucleolin: Isolation, characterization and improvement of aggregation. Biochemical and Biophysical Research Communications, 2017, 485, 446-453.                                                                                    | 2.1  | 19        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions. Emerging Microbes and Infections, 2017, 6, 1-7.                                                                | 6.5  | 21        |
| 38 | Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus<br>(MERS-CoV) in common marmosets. Antiviral Research, 2017, 143, 30-37.                                                                         | 4.1  | 56        |
| 39 | A Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope on H7N9 Influenza<br>Hemagglutinin. Cell Host and Microbe, 2017, 22, 471-483.e5.                                                                           | 11.0 | 48        |
| 40 | Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk<br>Neuroblastoma. Cancer Cell, 2017, 32, 295-309.e12.                                                                                         | 16.8 | 148       |
| 41 | Potent <i>In Vivo</i> NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein. Journal of Virology, 2017, 91, .                                            | 3.4  | 31        |
| 42 | Human monoclonal antibodies as candidate therapeutics against emerging viruses. Frontiers of Medicine, 2017, 11, 462-470.                                                                                                                  | 3.4  | 38        |
| 43 | Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic<br>Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection. Scientific Reports, 2016,<br>6, 31629.                       | 3.3  | 50        |
| 44 | Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Specific Human<br>Monoclonal Antibody Protects Rabbits From MERS-CoV Infection. Journal of Infectious Diseases, 2016,<br>213, 1557-1561.                        | 4.0  | 84        |
| 45 | A dualâ€specific antiâ€ <scp>IGFâ€1/IGFâ€2</scp> human monoclonal antibody alone and in combination with temsirolimus for therapy of neuroblastoma. International Journal of Cancer, 2015, 137, 2243-2252.                                 | 5.1  | 19        |
| 46 | Identification of Non-HIV Immunogens That Bind to Germline b12 Predecessors and Prime for Elicitation of Cross-clade Neutralizing HIV-1 Antibodies. PLoS ONE, 2015, 10, e0126428.                                                          | 2.5  | 9         |
| 47 | Germlining of the HIV-1 broadly neutralizing antibody domain m36. Antiviral Research, 2015, 116, 62-66.                                                                                                                                    | 4.1  | 2         |
| 48 | Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials, 2015, 41, 141-150.                                                                                               | 11.4 | 58        |
| 49 | Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis. Nature Communications, 2015, 6, 6536.                                                                                 | 12.8 | 115       |
| 50 | Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen<br>receptor–expressing T cells. Blood, 2015, 125, 3466-3476.                                                                                         | 1.4  | 148       |
| 51 | Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nature Communications, 2015, 6, 8223.                                                                  | 12.8 | 106       |
| 52 | Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn. MAbs, 2015, 7, 922-930.                                                                                                  | 5.2  | 25        |
| 53 | No evidence for a superior platform to develop therapeutic antibodies rapidly in response to MERS-CoV and other emerging viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5115-E5115. | 7.1  | 1         |
| 54 | Assessment of folate receptor-β expression in human neoplastic tissues. Oncotarget, 2015, 6, 14700-14709.                                                                                                                                  | 1.8  | 64        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Monomeric IgG1 Fc molecules displaying unique Fc receptor interactions that are exploitable to treat inflammation-mediated diseases. MAbs, 2014, 6, 1201-1210.                                                                  | 5.2  | 24        |
| 56 | Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human<br>Monoclonal Antibody. Science Translational Medicine, 2014, 6, 242ra82.                                                         | 12.4 | 117       |
| 57 | The Antibody Germline/Maturation Hypothesis, Elicitation of Broadly Neutralizing Antibodies Against<br>HIV-1 and Cord Blood IgM Repertoires. Frontiers in Immunology, 2014, 5, 398.                                             | 4.8  | 15        |
| 58 | Exceptionally Potent Neutralization of Middle East Respiratory Syndrome Coronavirus by Human<br>Monoclonal Antibodies. Journal of Virology, 2014, 88, 7796-7805.                                                                | 3.4  | 212       |
| 59 | Exceptionally Potent and Broadly Cross-Reactive, Bispecific Multivalent HIV-1 Inhibitors Based on<br>Single Human CD4 and Antibody Domains. Journal of Virology, 2014, 88, 1125-1139.                                           | 3.4  | 51        |
| 60 | Engineered Fc based antibody domains and fragments as novel scaffolds. Biochimica Et Biophysica Acta<br>- Proteins and Proteomics, 2014, 1844, 1977-1982.                                                                       | 2.3  | 33        |
| 61 | Discovery of Novel Candidate Therapeutics and Diagnostics Based on Engineered Human Antibody<br>Domains. Current Drug Discovery Technologies, 2014, 11, 28-40.                                                                  | 1.2  | 20        |
| 62 | Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.<br>Blood, 2013, 121, 1165-1174.                                                                                                   | 1.4  | 478       |
| 63 | Engineered Soluble Monomeric IgG1 CH3 Domain. Journal of Biological Chemistry, 2013, 288, 25154-25164.                                                                                                                          | 3.4  | 46        |
| 64 | Epitope Mapping of M36, a Human Antibody Domain with Potent and Broad HIV-1 Inhibitory Activity. PLoS<br>ONE, 2013, 8, e66638.                                                                                                  | 2.5  | 8         |
| 65 | Pharmacokinetics of engineered human monomeric and dimeric CH2 domains. MAbs, 2012, 4, 466-474.                                                                                                                                 | 5.2  | 23        |
| 66 | Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced<br>binding to CD4 and CD4 binding site antibodies. Biochemical and Biophysical Research<br>Communications, 2012, 425, 931-937. | 2.1  | 6         |
| 67 | A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus<br>Challenge. Science Translational Medicine, 2011, 3, 105ra103.                                                                      | 12.4 | 135       |
| 68 | Shortened Engineered Human Antibody CH2 Domains. Journal of Biological Chemistry, 2011, 286, 27288-27293.                                                                                                                       | 3.4  | 51        |
| 69 | Bifunctional fusion proteins of the human engineered antibody domain m36 with human soluble CD4<br>are potent inhibitors of diverse HIV-1 isolates. Antiviral Research, 2010, 88, 107-115.                                      | 4.1  | 38        |
| 70 | A large human domain antibody library combining heavy and light chain CDR3 diversity. Molecular<br>Immunology, 2010, 47, 912-921.                                                                                               | 2.2  | 35        |
| 71 | Therapeutic antibodies, vaccines and antibodyomes. MAbs, 2010, 2, 347-356.                                                                                                                                                      | 5.2  | 129       |
| 72 | Engineered Human Antibody Constant Domains with Increased Stability. Journal of Biological<br>Chemistry, 2009, 284, 14203-14210.                                                                                                | 3.4  | 89        |

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Engineered CH2 domains (nanoantibodies). MAbs, 2009, 1, 26-28.                                                                                                                                                                                                                       | 5.2 | 55        |
| 74 | Identification and characterization of fully human anti-CD22 monoclonal antibodies. MAbs, 2009, 1, 297-303.                                                                                                                                                                          | 5.2 | 34        |
| 75 | A Neutralizing Human Monoclonal Antibody Protects against Lethal Disease in a New Ferret Model of<br>Acute Nipah Virus Infection. PLoS Pathogens, 2009, 5, e1000642.                                                                                                                 | 4.7 | 251       |
| 76 | Therapeutic Antibodies: Current State and Future Trends – Is a Paradigm Change Coming Soon?.<br>Methods in Molecular Biology, 2009, 525, 1-27.                                                                                                                                       | 0.9 | 113       |
| 77 | A large library based on a novel (CH2) scaffold: Identification of HIV-1 inhibitors. Biochemical and<br>Biophysical Research Communications, 2009, 387, 387-392.                                                                                                                     | 2.1 | 64        |
| 78 | Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1<br>envelope glycoproteins: Implications for evasion of immune responses and design of vaccine<br>immunogens. Biochemical and Biophysical Research Communications, 2009, 390, 404-409. | 2.1 | 239       |
| 79 | Construction of a Human Antibody Domain (VH) Library. Methods in Molecular Biology, 2009, 525,<br>81-99.                                                                                                                                                                             | 0.9 | 26        |
| 80 | Construction of a Large NaÃ <sup>-</sup> ve Human Phage-Displayed Fab Library Through One-Step Cloning. Methods<br>in Molecular Biology, 2009, 525, 129-142.                                                                                                                         | 0.9 | 49        |
| 81 | Sequential Antigen Panning for Selection of Broadly Cross-Reactive HIV-1-Neutralizing Human<br>Monoclonal Antibodies. Methods in Molecular Biology, 2009, 562, 143-154.                                                                                                              | 0.9 | 4         |
| 82 | Structure of an isolated unglycosylated antibody C <sub>H</sub> 2 domain. Acta Crystallographica<br>Section D: Biological Crystallography, 2008, 64, 1062-1067.                                                                                                                      | 2.5 | 29        |
| 83 | Construction of a Large Phage-Displayed Human Antibody Domain Library with a Scaffold Based On a<br>Newly Identified Highly Soluble, Stable Heavy Chain Variable Domain. Journal of Molecular Biology,<br>2008, 382, 779-789.                                                        | 4.2 | 72        |
| 84 | Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17121-17126.                                      | 7.1 | 100       |
| 85 | Exceptionally Potent Cross-Reactive Neutralization of Nipah and Hendra Viruses by a Human<br>Monoclonal Antibody. Journal of Infectious Diseases, 2008, 197, 846-853.                                                                                                                | 4.0 | 144       |
| 86 | Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12123-12128.                                                                        | 7.1 | 276       |
| 87 | Structure of Severe Acute Respiratory Syndrome Coronavirus Receptor-binding Domain Complexed with Neutralizing Antibody*. Journal of Biological Chemistry, 2006, 281, 15829-15836.                                                                                                   | 3.4 | 238       |
| 88 | Potent Neutralization of Hendra and Nipah Viruses by Human Monoclonal Antibodies. Journal of Virology, 2006, 80, 891-899.                                                                                                                                                            | 3.4 | 155       |
| 89 | The SARS-CoV S glycoprotein: expression and functional characterization. Biochemical and Biophysical Research Communications, 2003, 312, 1159-1164.                                                                                                                                  | 2.1 | 329       |