Raphaël Turcotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476292/publications.pdf

Version: 2024-02-01

48 papers

2,859 citations

331670 21 h-index 289244 40 g-index

50 all docs

50 docs citations

times ranked

50

4905 citing authors

#	Article	IF	Citations
1	Repeated imaging through a multimode optical fiber using adaptive optics. Biomedical Optics Express, 2022, 13, 662.	2.9	2
2	Computational super-resolution imaging with multimode fiber using optimized illuminations. , 2022, , .		0
3	Compressed imaging with focused light. Journal of Optics (United Kingdom), 2022, 24, 065301.	2.2	1
4	Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers, 2021, 1, .	21.2	90
5	Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning. Optics Express, 2021, 29, 36660.	3.4	4
6	Remote-Focussing for Volumetric Imaging in a Contactless and Label-Free Neurosurgical Microscope. , 2021, , .		1
7	Sensorless shift-compensation for microscopy through a multimode optical fibre., 2021,,.		O
8	Sensorless adaptive optics for multimode optical fibre endo-microscopy. , 2021, , .		0
9	A universal framework for microscope sensorless adaptive optics: Generalized aberration representations. APL Photonics, 2020, 5, .	5.7	17
10	Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Science Advances, 2020, 6, eaaz 3870.	10.3	39
11	Live-animal imaging of native haematopoietic stem and progenitor cells. Nature, 2020, 578, 278-283.	27.8	171
12	Compact and contactless reflectance confocal microscope for neurosurgery. Biomedical Optics Express, 2020, 11, 4772.	2.9	7
13	Deconvolution for multimode fiber imaging: modeling of spatially variant PSF. Biomedical Optics Express, 2020, 11, 4759.	2.9	18
14	Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber. Optics Letters, 2020, 45, 6599.	3.3	15
15	Intrinsic Optical Imaging of ECM Mechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 165-202.	1.0	1
16	Dynamic super-resolution structured illumination imaging in the living brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9586-9591.	7.1	103
17	Active compensation of extrinsic polarization errors using adaptive optics. Optics Express, 2019, 27, 35797.	3.4	14
18	Focusing light in biological tissue through a multimode optical fiber: refractive index matching. Optics Letters, 2019, 44, 2386.	3.3	12

#	Article	IF	Citations
19	Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light: Science and Applications, 2018, 7, 110.	16.6	118
20	Micromechanics of elastic lamellae: unravelling the role of structural inhomogeneity in multi-scale arterial mechanics. Journal of the Royal Society Interface, 2018, 15, 20180492.	3.4	28
21	Optical alignment device for two-photon microscopy. Biomedical Optics Express, 2018, 9, 3624.	2.9	12
22	Image-guided transplantation of single cells in the bone marrow of live animals. Scientific Reports, 2017, 7, 3875.	3.3	15
23	Intravital multiphoton photoconversion with a cell membrane dye. Journal of Biophotonics, 2017, 10, 206-210.	2.3	4
24	Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomechanics and Modeling in Mechanobiology, 2017, 16, 213-225.	2.8	78
25	Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomedical Optics Express, 2017, 8, 3891.	2.9	46
26	Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS ONE, 2017, 12, e0186846.	2.5	38
27	Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Scientific Reports, 2016, 6, 24303.	3.3	10
28	Self-renewal of a purified <i>Tie2</i> ⁺ hematopoietic stem cell population relies on mitochondrial clearance. Science, 2016, 354, 1156-1160.	12.6	251
29	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	11.1	136
30	Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy. Scientific Reports, 2016, 6, 31685.	3.3	13
31	Molecular Order of Arterial Collagen Using Circular Polarization Second-Harmonic Generation Imaging. Biophysical Journal, 2016, 110, 530-533.	0.5	13
32	Maintaining polarization in polarimetric multiphoton microscopy. Journal of Biophotonics, 2015, 8, 884-888.	2.3	8
33	Vascular Smooth Muscle Sirtuinâ€1 Protects Against Aortic Dissection During Angiotensin Il–Induced Hypertension. Journal of the American Heart Association, 2015, 4, e002384.	3.7	54
34	Contribution of Collagen Fiber Undulation to Regional Biomechanical Properties Along Porcine Thoracic Aorta. Journal of Biomechanical Engineering, 2015, 137, 051001.	1.3	58
35	Femtosecond laser bone ablation with a high repetition rate fiber laser source. Biomedical Optics Express, 2015, 6, 32.	2.9	37
36	In Vivo Femtosecond Ablation and Imaging in Bone with a High Repetition Rate Source. , 2015, , .		0

#	Article	IF	CITATIONS
37	Embigin Regulates HSPC Homing and Quiescence and Acts As a Cell Surface Marker for a Niche Factor-Enriched Subset of Osteolineage Cells. Blood, 2015, 126, 663-663.	1.4	2
38	Characterization of multiphoton microscopy in the bone marrow following intravital laser osteotomy. Biomedical Optics Express, 2014, 5, 3578.	2.9	33
39	Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature, 2014, 508, 269-273.	27.8	933
40	Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen. Biophysical Journal, 2014, 106, 2684-2692.	0.5	172
41	Characterization of Biaxial Mechanical Behavior of Porcine Aorta under Gradual Elastin Degradation. Annals of Biomedical Engineering, 2013, 41, 1528-1538.	2.5	59
42	Soluble Guanylate Cyclase a1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma. Annals of Neurosciences, 2013, 20, 65-6.	1.7	3
43	Constitutive Modeling of Biaxial Mechanical Response of Arteries Subjected to Gradual Elastin Degradation. , 2013, , .		0
44	Characterization of Biaxial Mechanical Behavior of Porcine Aorta under Gradual Elastin Degradation. , 2013, 41, 1528.		1
45	Soluble Guanylate Cyclase α1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma. PLoS ONE, 2013, 8, e60156.	2.5	55
46	Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label. PLoS ONE, 2013, 8, e69257.	2.5	50
47	Elastin in the Arterial ECM: Interactions With Collagen and the Mechanical Properties After Elastin Degradation. , 2013, , .		0
48	Characterization of Multilayer Anti-Fog Coatings. ACS Applied Materials & Samp; Interfaces, 2011, 3, 750-758.	8.0	137