Jongpil Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3476167/publications.pdf

Version: 2024-02-01

		304743	182427
52	3,514	22	51
papers	citations	h-index	g-index
53	53	53	6190
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science, 2007, 317, 1220-1224.	12.6	1,094
2	Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development. Cell Stem Cell, 2011, 9, 166-175.	11,1	453
3	Functional Integration of Dopaminergic Neurons Directly Converted from Mouse Fibroblasts. Cell Stem Cell, 2011, 9, 413-419.	11.1	238
4	Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids. Stem Cell Reports, 2019, 12, 518-531.	4.8	223
5	In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 524-528.	14.8	183
6	Inhibition of Drp1 Ameliorates Synaptic Depression, $\hat{Al^2}$ Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. Journal of Neuroscience, 2017, 37, 5099-5110.	3.6	176
7	Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy. Nature Nanotechnology, 2017, 12, 1006-1014.	31.5	113
8	Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. Journal of Controlled Release, 2016, 235, 222-235.	9.9	99
9	Nanogrooved substrate promotes direct lineage reprogramming ofÂfibroblasts to functional induced dopaminergic neurons. Biomaterials, 2015, 45, 36-45.	11.4	66
10	Electromagnetic Fields Mediate Efficient Cell Reprogramming into a Pluripotent State. ACS Nano, 2014, 8, 10125-10138.	14.6	64
11	Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials, 2019, 192, 500-509.	11.4	64
12	Reprogramming of Postnatal Neurons into Induced Pluripotent Stem Cells by Defined Factors. Stem Cells, 2011, 29, 992-1000.	3.2	59
13	Cell reprogramming into the pluripotent state using graphene based substrates. Biomaterials, 2014, 35, 8321-8329.	11.4	55
14	Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 65.	3.4	39
15	Generation of Integrationâ€Free Induced Neurons Using Graphene Oxideâ€Polyethylenimine. Small, 2017, 13, 1601993.	10.0	32
16	Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509.	10.4	30
17	Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI Improves Cognitive and Memory Function in the Mouse Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 709091.	3.4	29
18	Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Life Sciences, 2014, 102, 16-27.	4.3	28

#	Article	IF	Citations
19	Gastrodia elata Blume alleviates L-DOPA-induced dyskinesia by normalizing FosB and ERK activation in a 6-OHDA-lesioned Parkinson's disease mouse model. BMC Complementary and Alternative Medicine, 2014, 14, 107.	3.7	28
20	Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Experimental and Molecular Medicine, 2019, 51, 1-8.	7.7	28
21	Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 7706-7721.	4.0	27
22	Effects of a hypomagnetic field on DNA methylation during the differentiation of embryonic stem cells. Scientific Reports, 2019, 9, 1333.	3.3	24
23	Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Research, 2014, 1587, 23-32.	2.2	23
24	p53 signalling mediates acupuncture-induced neuroprotection in Parkinson's disease. Biochemical and Biophysical Research Communications, 2015, 460, 772-779.	2.1	23
25	Novel analgesic effects of melanin-concentrating hormone on persistent neuropathic and inflammatory pain in mice. Scientific Reports, 2018, 8, 707.	3.3	22
26	Modelling APOE É>3/4 allele-associated sporadic Alzheimer's disease in an induced neuron. Brain, 2017, 140, 2193-2209.	7.6	21
27	MPTP-induced vulnerability of dopamine neurons in A53T \hat{l}_{\pm} -synuclein overexpressed mice with the potential involvement of DJ-1 downregulation. Korean Journal of Physiology and Pharmacology, 2017, 21, 625.	1.2	20
28	Effects of a combination treatment of KD5040 and L-dopa in a mouse model of Parkinson's disease. BMC Complementary and Alternative Medicine, 2017, 17, 220.	3.7	19
29	Modeling of Autism Using Organoid Technology. Molecular Neurobiology, 2017, 54, 7789-7795.	4.0	17
30	Investigating the role of Sirtuins in cell reprogramming. BMB Reports, 2018, 51, 500-507.	2.4	17
31	Nasal Cavity Administration of Melanin-Concentrating Hormone Improves Memory Impairment in Memory-Impaired and Alzheimer's Disease Mouse Models. Molecular Neurobiology, 2019, 56, 8076-8086.	4.0	16
32	Neural induction of porcineâ€induced pluripotent stem cells and further differentiation using glioblastomaâ€cultured medium. Journal of Cellular and Molecular Medicine, 2019, 23, 2052-2063.	3.6	16
33	Electromagnetized gold nanoparticles improve neurogenesis and cognition in the aged brain. Biomaterials, 2021, 278, 121157.	11.4	16
34	Role of Sirtuins in Linking Metabolic Syndrome with Depression. Frontiers in Cellular Neuroscience, 2016, 10, 86.	3.7	13
35	Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation. Applied Biochemistry and Biotechnology, 2016, 180, 682-694.	2.9	13
36	Activation of melatonin receptor 1 by CRISPRâ€Cas9 activator ameliorates cognitive deficits in an Alzheimer's disease mouse model. Journal of Pineal Research, 2022, 72, .	7.4	12

#	Article	IF	CITATIONS
37	Identification of Latrophilin-2 as a Novel Cell-Surface Marker for the Cardiomyogenic Lineage and Its Functional Significance in Heart Development. Circulation, 2019, 139, 2910-2912.	1.6	10
38	Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing. Cells, 2020, 9, 1447.	4.1	10
39	In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials, 2022, 281, 121327.	11.4	10
40	Dormant state of quiescent neural stem cells links Shank3 mutation to autism development. Molecular Psychiatry, 2022, 27, 2751-2765.	7.9	10
41	Rad50 mediates DNA demethylation to establish pluripotent reprogramming. Experimental and Molecular Medicine, 2020, 52, 1116-1127.	7.7	9
42	Salusin- \hat{l}^2 mediate neuroprotective effects for Parkinson's disease. Biochemical and Biophysical Research Communications, 2018, 503, 1428-1433.	2.1	8
43	Epitranscriptomic N ⁶ -Methyladenosine Modification Is Required for Direct Lineage Reprogramming into Neurons. ACS Chemical Biology, 2020, 15, 2087-2097.	3.4	8
44	Acceleration of somatic cell reprogramming into the induced pluripotent stem cell using a mycosporine-like amino acid, Porphyra 334. Scientific Reports, 2020, 10, 3684.	3.3	8
45	Transcriptional activation with Cas9 activator nanocomplexes rescues Alzheimer's disease pathology. Biomaterials, 2021, 279, 121229.	11.4	8
46	Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI promotes neuronal rejuvenation in aged mice. Biochemical and Biophysical Research Communications, 2022, 603, 41-48.	2.1	8
47	Impaired motor coordination in Pitx3 overexpression mice. Biochemical and Biophysical Research Communications, 2014, 446, 1211-1218.	2.1	7
48	Homogeneous generation of iDA neurons with high similarity to bona fide DA neurons using a drug inducible system. Biomaterials, 2015, 72, 152-162.	11.4	6
49	Electromagnetized Graphene Facilitates Direct Lineage Reprogramming into Dopaminergic Neurons. Advanced Functional Materials, 2021, 31, 2105346.	14.9	6
50	Nac1 facilitates pluripotency gene activation for establishing somatic cell reprogramming. Biochemical and Biophysical Research Communications, 2019, 518, 253-258.	2.1	4
51	Acupuncture Alleviates Levodopa-Induced Dyskinesia via Melanin-Concentrating Hormone in Pitx3-Deficient aphakia and 6-Hydroxydopamine-Lesioned Mice. Molecular Neurobiology, 2019, 56, 2408-2423.	4.0	2
52	Aberrant qNSC activity mediates decreased active neurogenesis in the Shank3 deficient Autism development. Molecular Psychiatry, 2022, 27, 2637-2637.	7.9	0