Eric Guilyardi

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3475588/publications.pdf
Version: 2024-02-01


```
1. Increasing frequency of extreme El NiÃ }\pm0\mathrm{ events due to greenhouse warming. Nature Climate Change,
2014, 4, 111-116.
\(7 \quad\) ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.
\begin{tabular}{ll} 
Increased frequency of extreme LaÂNiÃ \(\pm\) a events under greenhouse warming. Nature Climate Change, & 18.8 \\
\(2015,5,132-137\).
\end{tabular}


12 Triggering of El Niï \(i^{1 / 20}\) by westerly wind events in a coupled general circulation model. Climate Dynamics, 2004, 23, 601-620.
3.8

220
\[
\begin{aligned}
& 13 \text { A Model Study of Oceanic Mechanisms Affecting Equatorial Pacific Sea Surface Temperature during } \\
& \text { the } 1997 \mathrm{E}^{€ \prime 9} 98 \text { El NiÃ̃0. Journal of Physical Oceanography, 2001, 31, 1649-1675. }
\end{aligned}
\]

14 Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past, 2014,
Tropical explosive volcanic eruptions can trigger El NiÃ \(\pm 0\) by cooling tropical Africa. Nature
Communications, 2017, 8,778 .

The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmospheric Science Letters, 2009, 10, 170-176.
25 Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.
Nature Communications, 2015, 6, 6545.
26 Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package. Bulletin of the American
Meteorological Society, 2021, 102, E193-E217.
27 Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and
prospects. Science, 2021, 374, eaay9165.

Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package. Bulletin of the American Meteorological Society, 2021, 102, E193-E217.
3.3

93

Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and

Modulation of equatorial Pacific westerlyleasterly wind events by the Maddenâ€"Julian oscillation and convectively-coupled Rossby waves. Climate Dynamics, 2016, 46, 2155-2178.
3.8

89
Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL modelâ€"part l: comparing
IPSL_CM5A to IPSL_CM4. Climate Dynamics, 2013, 40, 2447-2468.
3.8

88

The impact of westerly wind bursts on the diversity and predictability of El Ni \(\tilde{A} \pm 0\) events: An ocean
30 The impact of westerly wind bursts on the diversity and predictability of El Ni
energetics perspective. Geophysical Research Letters, 2014, 41, 4654-4663.
4.0

79

Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics,
2016, 7, 813-830.

Initialisation and predictability of the AMOC over the last 50Âyears in a climate model. Climate
3.8

72
Dynamics, 2013, 40, 2381-2399.
3.2

70
The March 1997 Westerly Wind Event and the Onset of the 1997/98 El NiÃ \(\pm 0\) : Understanding the Role of
33 the Atmospheric Response. Journal of Climate, 2003, 16, 3330-3343.

The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Climate Dynamics, 2011, 37, 1271-1292.

Human-induced changes to the global ocean water masses and their time of emergence. Nature Climate
Change, 2020, 10, 1030-1036.
```New Strategies for Evaluating ENSO Processes in Climate Models. Bulletin of the American
```

$3.3 \quad 35$
43 Meteorological Society, 2012, 93, 235-238.3.335
Observation and integrated Earth-system science: A roadmap for 2016â€"2025. Advances in SpaceResearch, 2016, 57, 2037-2103.
45 Influence of Westerly Wind Events stochasticity on El NiÃ $\pm 0$ amplitude: the case of 2014 vs. 2015. Climate Dynamics, 2019, 52, 7435-7454.
Western Pacific Oceanic Heat Content: A Better Predictor of La NiÃ $\pm$ a Than of El NiÃ $\pm 0$. Geophysical Research Letters, 2018, 45, 9824-9833.
PRISM and ENES: a European approach to Earth system modelling. Concurrency Computation Practice and Experience, 2006, 18, 247-262.3.8354.034
2.2 ..... 33A new feedback on climate change from the hydrological cycle. Geophysical Research Letters, 2007, 34,4.032
Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model3.830framework. Climate Dynamics, 2015, 44, 315-338.Northward Pathway Across the Tropical North Pacific Ocean Revealed by Surface Salinity: How do El2.628$\mathrm{NiA} \pm 0$ Anomalies Reach Hawaii?. Journal of Geophysical Research: Oceans, 2018, 123, 2697-2715.$3.6 \quad 26$Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase6 (CMIP6). Geoscientific Model Development, 2020, 13, 2149-2167.The role of mean ocean salinity in climate. Dynamics of Atmospheres and Oceans, 2010, 49, 108-123.

Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts. Climate Dynamics, 2018,
50, 939-954.

```
55 How well do coupled models replicate ocean energetics relevant to ENSO?. Climate Dynamics, 2011, 36,
2147-2158.
```

Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model. Climate Dynamics, 2016, 47, 1225-1246.
3.8

21

57 Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed?. Geophysical Research Letters, 2021, 48, e2021GL095041.

58 Documenting Climate Models and Their Simulations. Bulletin of the American Meteorological Society,

Fourth CLIVAR Workshop on the Evaluation of ENSO Processes in Climate Models: ENSO in a Changing
Climate. Bulletin of the American Meteorological Society, 2016, 97, 817-820.
3.3

Describing Earth system simulations with the Metafor CIM. Geoscientific Model Development, 2012, 5, 1493-1500.
61 Modulation of equatorial Pacific sea surface temperature response to westerly wind events by the
 contribution of westerly wind events. Climate Dynamics, 2015, 44, 735-755.
3.8
Development and exploitation of a controlled vocabulary in support of climate modelling.
Geoscientific Model Development, 2014, 7, 479-493.

$64 \quad$| Southern Ocean transformation in a coupled model with and without eddy mass fluxes. Tellus, Series |
| :--- |
| A: Dynamic Meteorology and Oceanography, 2000, 52, 554-565. |

$3.6 \quad 11$
Effect of surface restoring on subsurface variability in a climate model during 1949ấ" 2005 . Climate
Dynamics, 2015, 44, 2333-2349.

Dynamics, 2015, 44, 2333-2349.
$1.7 \quad 10$

Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach. Climate Dynamics, 2017, 49, 3425-3441.
3.8

9

