
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474927/publications.pdf Version: 2024-02-01



IFONG IN HAN

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bi-functional carbon doped and decorated ZnO nanorods for enhanced pH monitoring of dairy milk<br>and adsorption of hazardous dyes. Journal of Industrial and Engineering Chemistry, 2022, , .                                                                                       | 5.8  | 4         |
| 2  | Flower-like Mo doped Ni(OH)2@Co3S4-Ni3S2 heterostructure for asymmetric supercapacitors.<br>Surfaces and Interfaces, 2022, 30, 101896.                                                                                                                                               | 3.0  | 10        |
| 3  | Investigating the pseudo – Capacitive properties of interlayer engineered VOPO4 by organic molecule<br>intercalation. Ceramics International, 2022, 48, 26226-26232.                                                                                                                 | 4.8  | 2         |
| 4  | In Situ Preparation of Gold–Silica Particles from a Mixture of Oil Palm Leaves and Chloroauric Acid<br>for Reduction of Nitroaromatic Compounds in Water. Waste and Biomass Valorization, 2021, 12,<br>3773-3780.                                                                    | 3.4  | 3         |
| 5  | Induced symmetric 2D Mesoporous Graphitic Carbon Spinel Cobalt Ferrite (CoFe2O4/2D-C) with high porosity fabricated via a facile and swift sucrose templated microwave combustion route for an improved supercapacitive performance. Materials Research Bulletin, 2021, 133, 111053. | 5.2  | 7         |
| 6  | Robust structural stability and performanceâ€enhanced asymmetric supercapacitors based on<br>CuMoO4/ZnMoO4 nanoflowers prepared via a simple and low-energy precipitation route. Journal of<br>Materials Science: Materials in Electronics, 2021, 32, 6668-6681.                     | 2.2  | 14        |
| 7  | Potentiometric Performance of a Highly Flexible-Shaped Trifunctional Sensor Based on ZnO/V2O5<br>Microrods. Sensors, 2021, 21, 2559.                                                                                                                                                 | 3.8  | 4         |
| 8  | Construction of NiCo-OH/Ni3S2 core-shell heterostructure wrapped in rGO nanosheets as efficient supercapacitor electrode enabling high stability up to 20,000 cycles. Journal of Electroanalytical Chemistry, 2021, 889, 115226.                                                     | 3.8  | 12        |
| 9  | Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF<br>magnetron sputtering: Bending and washing endurance tests. Journal of Industrial and Engineering<br>Chemistry, 2021, 100, 372-382.                                                | 5.8  | 8         |
| 10 | One-pot synthesis of ultrahigh performance nanorod structured Co3O4@Fe2O3 anchored on a resonating 2D-carbon with high potential window and surface area for supercapacitors application. Ceramics International, 2021, 47, 23665-23669.                                             | 4.8  | 4         |
| 11 | Reinforced supercapacitive behavior of O3-type layer-structured Na3Ni2BiO6 in<br>1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) electrolyte. Journal of Materials Science:<br>Materials in Electronics, 2020, 31, 16688-16700.                                              | 2.2  | 2         |
| 12 | Biogenesis of Prism-Like Silver Oxide Nanoparticles Using Nappa Cabbage Extract and Their<br>p-Nitrophenol Sensing Activity. Molecules, 2020, 25, 2298.                                                                                                                              | 3.8  | 6         |
| 13 | Newly Design Porous/Sponge Red Phosphorus@Graphene and Highly Conductive Ni2P Electrode for<br>Asymmetric Solid State Supercapacitive Device With Excellent Performance. Nano-Micro Letters, 2020,<br>12, 25.                                                                        | 27.0 | 44        |
| 14 | Quaternary transition metal molybdate (Mn 0.25Ni0.25Co0.25Fe0.25MoO4) design to improve the kinetics of the redox reaction in supercapacitors. Ceramics International, 2020, 46, 12422-12429.                                                                                        | 4.8  | 14        |
| 15 | Development of a Highly Flexible and Durable Fiber-Shaped Temperature Sensor Based on Graphene/Ni<br>Double-Decked Layer for Wearable Devices. IEEE Sensors Journal, 2020, 20, 5146-5154.                                                                                            | 4.7  | 12        |
| 16 | Sucrose-templated interconnected meso/macro-porous 2D symmetric graphitic carbon networks as<br>supports for α-Fe <sub>2</sub> O <sub>3</sub> towards improved supercapacitive behavior. RSC<br>Advances, 2020, 10, 15751-15762.                                                     | 3.6  | 4         |
| 17 | Development of flexible, stable, and efficient inverted organic solar cells harvesting light in all directions. Electrochimica Acta, 2019, 326, 134985.                                                                                                                              | 5.2  | 3         |
| 18 | Preparation of hierarchical flower-like nickel sulfide as hole transporting material for organic solar cells via a one-step solvothermal method. Solar Energy, 2019, 188, 403-413.                                                                                                   | 6.1  | 12        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polypyrrole nanostructures//activated carbon based electrode for energy storage applications.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 7890-7900.                                                                              | 2.2 | 5         |
| 20 | Enhancing the photovoltaic characteristics of organic solar cells by introducing highly conductive graphene as a conductive platform for a PEDOT:PSS anode interfacial layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 6187-6200. | 2.2 | 15        |
| 21 | Enhanced pseudocapacitance of NiSe2/Ni(OH)2 nanocomposites for supercapacitor electrode.<br>Materials Letters, 2019, 234, 87-91.                                                                                                                           | 2.6 | 28        |
| 22 | Studies on the graded band-gap copper indium di-selenide thin film solar cells prepared by electrochemical route. Applied Surface Science, 2019, 466, 358-366.                                                                                             | 6.1 | 7         |
| 23 | Robust cyclic stability and high-rate asymmetric supercapacitor based on orange peel-derived<br>nitrogen-doped porous carbon and intercrossed interlinked urchin-like NiCo2O4@3DNF framework.<br>Electrochimica Acta, 2019, 293, 84-96.                    | 5.2 | 62        |
| 24 | Significant improvement in the photovoltaic stability of bulk heterojunction organic solar cells by the molecular level interaction of graphene oxide with a PEDOT: PSS composite hole transport layer. Solar Energy, 2018, 167, 24-34.                    | 6.1 | 41        |
| 25 | Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. Journal of Alloys and Compounds, 2018, 742, 342-350.                                                                                                | 5.5 | 119       |
| 26 | Facile room temperature synthesis and application of MnMoO4·0.9H2O as supercapacitor electrode<br>material. Materials Letters, 2018, 217, 146-150.                                                                                                         | 2.6 | 25        |
| 27 | Fabrication of highly flexible conducting electrode based on MnS nanoparticles/graphite/scotch tape<br>for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2018, 29,<br>1636-1642.                                    | 2.2 | 13        |
| 28 | Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. Journal of Solid State Electrochemistry, 2018, 22, 303-313.                                                                                                                    | 2.5 | 69        |
| 29 | Single fiber UV detector based on hydrothermally synthesized ZnO nanorods for wearable computing devices. Applied Surface Science, 2018, 428, 233-241.                                                                                                     | 6.1 | 29        |
| 30 | Fabrication of β-Ni(OH)2Ââ^¥Âγ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors.<br>Journal of Solid State Electrochemistry, 2018, 22, 293-302.                                                                                        | 2.5 | 8         |
| 31 | Interface engineering of G-PEDOT: PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation. Solar Energy, 2018, 174, 743-756.                  | 6.1 | 23        |
| 32 | Improving the conductivity of PEDOT:PSS to nearly 1 million S/m with graphene on an ITO-glass substrate. Synthetic Metals, 2018, 245, 276-285.                                                                                                             | 3.9 | 21        |
| 33 | Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells. Applied Nanoscience (Switzerland), 2018, 8, 1325-1341.                                                  | 3.1 | 9         |
| 34 | Solid State Supercapacitor Based on Manganese Oxide@Reduced Graphene Oxide and Polypyrrole Electrodes. ChemElectroChem, 2018, 5, 2747-2757.                                                                                                                | 3.4 | 17        |
| 35 | The effect of the functionalization of multiple carrier transporting interlayers on the performance and stability of bulk heterojunction organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 13561-13576.               | 2.2 | 3         |
| 36 | Electrical structure, magnetic polaron and lithium ion dynamics in four mixed-metal oxide<br>multiple-phase electrode cathode material for Li ion batteries from density functional theory study.<br>Computational Materials Science, 2017, 132, 92-103.   | 3.0 | 9         |

| #  | Article                                                                                                                                                                                                                                                     | IF                 | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 37 | High Performance Cylindrical Capacitor as a Relative Humidity Sensor for Wearable Computing Devices. Journal of the Electrochemical Society, 2017, 164, B136-B141.                                                                                          | 2.9                | 18                  |
| 38 | Honeycomb layered oxide Na3Ni2SbO6 for high performance pseudocapacitor. Journal of Alloys and Compounds, 2017, 704, 734-741.                                                                                                                               | 5.5                | 16                  |
| 39 | The effect of the nickel and chromium concentration ratio on the temperature coefficient of the<br>resistance of a Ni–Cr thin film-based temperature sensor. Sensors and Actuators A: Physical, 2017, 260,<br>198-205.                                      | 4.1                | 16                  |
| 40 | Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sensors and Actuators A: Physical, 2017, 261, 268-273.                                                                     | 4.1                | 34                  |
| 41 | Resistive behavior of Ni thin film on a cylindrical PET monofilament with temperature for wearable computing devices. Sensors and Actuators A: Physical, 2017, 259, 96-104.                                                                                 | 4.1                | 10                  |
| 42 | Layered Na2/3Ni1/3Mn2/3O2 as electrode material with two redox active transition metals for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 728, 78-87.                                                                             | 5.5                | 11                  |
| 43 | Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices. Electronic Materials Letters, 2016, 12, 186-196.                                                                                           | 2.2                | 10                  |
| 44 | Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2016, 16, 6061-6067.                                                                                  | 0.9                | 5                   |
| 45 | Electrical structures, magnetic polaron and lithium ion dynamics in three transition metal doped<br>LiFe1â^'xMxPO4 (M = Mn, Co and La) cathode material for Li ion batteries from density functional theory<br>study. Solid State Ionics, 2016, 294, 73-81. | 2.7                | 16                  |
| 46 | Synthesis, characterization and lithium-ion migration dynamics simulation of LiFe1â"x T x PO4 (TÂ=ÂMn,) Tj ET<br>and Processing, 2016, 122, 1.                                                                                                              | Qq0 0 0 rgl<br>2.3 | BT /Overlock I<br>8 |
| 47 | Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Materials Letters, 2016, 181, 345-349.                                                                                                               | 2.6                | 92                  |
| 48 | Size effect on negative capacitance at forward bias in InGaN/GaN multiple quantum well-based blue<br>LED. Electronic Materials Letters, 2016, 12, 67-75.                                                                                                    | 2.2                | 14                  |
| 49 | Electrical characterization and thermal admittance spectroscopy analysis of InGaN/GaN MQW blue LED structure. Electronic Materials Letters, 2015, 11, 982-992.                                                                                              | 2.2                | 23                  |
| 50 | Synthesis and characterization of α-Fe2O3 Micro-/Nanorods-modified glassy carbon electrode for electrochemical sensing of nitrobenzene. Ceramics International, 2015, 41, 5568-5573.                                                                        | 4.8                | 31                  |
| 51 | Photocatalytic degradation of acid orange 7 using Cr-doped CeO2 nanorods. Journal of Materials<br>Science: Materials in Electronics, 2015, 26, 1441-1448.                                                                                                   | 2.2                | 8                   |
| 52 | Enhanced photocatalytic property of self-assembled Fe-doped CeO2 hierarchical nanostructures.<br>Materials Letters, 2015, 145, 189-192.                                                                                                                     | 2.6                | 35                  |
| 53 | Fabrication of CeO <sub>2</sub> /Fe <sub>2</sub> O <sub>3</sub> composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 15248-15258.                              | 10.3               | 189                 |
| 54 | Effect of SiO2 nanoparticle doping on electro-optical properties of polymer dispersed liquid crystal<br>lens for smart electronic glasses. Nano Convergence, 2015, 2, .                                                                                     | 12.1               | 18                  |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Facile hydrothermal synthesis of CeO2 nanopebbles. Bulletin of Materials Science, 2015, 38, 1135-1139.                                                                                                                                          | 1.7 | 14        |
| 56 | Structure and electrochemical detection of xenobiotic micro-pollutant hydroquinone using CeO <sub>2</sub> nanocrystals. RSC Advances, 2015, 5, 70558-70565.                                                                                     | 3.6 | 11        |
| 57 | Electroless plating of copper nanoparticles on PET fiber for non-enzymatic electrochemical detection of H <sub>2</sub> O <sub>2</sub> . RSC Advances, 2015, 5, 76729-76732.                                                                     | 3.6 | 13        |
| 58 | Solution-processed indium–tin-oxide nanoparticle transparent conductors on flexible glass<br>substrate with high optical transmittance and high thermal stability. Japanese Journal of Applied<br>Physics, 2014, 53, 08NF04.                    | 1.5 | 5         |
| 59 | Solvothermal synthesis of threeâ€dimensional CeO <sub>2</sub> micropillows and their photocatalytic property. Physica Status Solidi - Rapid Research Letters, 2014, 8, 643-647.                                                                 | 2.4 | 3         |
| 60 | Effect of cell gap on electro-optical properties of polymer dispersed liquid crystal lens for smart<br>electronic glasses. Electronic Materials Letters, 2014, 10, 857-861.                                                                     | 2.2 | 12        |
| 61 | Effect of liquid crystal concentration on electro-optical properties of polymer dispersed liquid<br>crystal lens for smart electronic glasses with auto-shading and auto-focusing function. Electronic<br>Materials Letters, 2014, 10, 607-610. | 2.2 | 17        |
| 62 | Effect of UV intensity on the electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses. Electronic Materials Letters, 2014, 10, 665-669.                                                                | 2.2 | 13        |
| 63 | Effects of oxide electron transport layer on quantum dots light emitting diode with an organic/inorganic hybrid structure. Electronic Materials Letters, 2013, 9, 779-782.                                                                      | 2.2 | 9         |
| 64 | IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses.<br>Sensors, 2013, 13, 16583-16590.                                                                                                              | 3.8 | 4         |
| 65 | High-Performance 2,8-Difluoro-5,11-bis(triethylsilylethynyl) Anthradithiophene Thin-Film Transistors<br>Facilitated by Predeposited Ink-Jet Blending. Japanese Journal of Applied Physics, 2013, 52, 031601.                                    | 1.5 | 5         |
| 66 | Active shutter glasses for 3D HDTV with flexible liquid crystal lens. , 2013, , .                                                                                                                                                               |     | 1         |
| 67 | Enhanced Stability of All Solution-Processed Organic Thin-Film Transistors Using Highly Conductive<br>Modified Polymer Electrodes. Japanese Journal of Applied Physics, 2012, 51, 091602.                                                       | 1.5 | 2         |
| 68 | High-Performance Semitransparent Bulk-Heterojunction Organic Photovoltaics with Ag Interfacial<br>Layer. Japanese Journal of Applied Physics, 2012, 51, 024104.                                                                                 | 1.5 | 0         |
| 69 | Effect of Zinc/Tin Composition Ratio on the Operational Stability of Solution-Processed<br>Zinc–Tin–Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2012, 33, 50-52.                                                                 | 3.9 | 57        |
| 70 | Improvement of electrical properties of printed ITO thin films by heat-treatment conditions. Current Applied Physics, 2011, 11, S202-S205.                                                                                                      | 2.4 | 13        |
| 71 | Fast and Stable Solution-Processed Transparent Oxide Thin-Film Transistor Circuits. IEEE Electron Device Letters, 2011, 32, 524-526.                                                                                                            | 3.9 | 22        |
| 72 | Improving the Electrical Properties of Zinc Tin Oxide Thin Film Transistors Using Atmospheric Plasma<br>Treatment. Electrochemical and Solid-State Letters, 2011, 14, H354.                                                                     | 2.2 | 10        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Transparent organic light-emitting devices with CsCl capping layers on semitransparent Ca/Ag<br>cathodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010,<br>172, 76-79. | 3.5 | 10        |
| 74 | Effect of Metallic Composition on Electrical Properties of Solution-Processed<br>Indium-Gallium-Zinc-Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2010, 57,<br>1009-1014.                   | 3.0 | 69        |
| 75 | Highly light-responsive ink-jet printed 6,13-bis(triisopropylsilylethynyl) pentacene phototransistors with suspended top-contact structure. Organic Electronics, 2010, 11, 1529-1533.                              | 2.6 | 30        |
| 76 | Top emission organic light-emitting devices with CsCl capping layer. Thin Solid Films, 2010, 518, 2793-2795.                                                                                                       | 1.8 | 3         |
| 77 | Eco-friendly synthesis of SiO2 nanoparticles with high purity for digital printing. Thin Solid Films, 2010, 518, 6634-6637.                                                                                        | 1.8 | 2         |
| 78 | Solvent-mediated threshold voltage shift in solution-processed transparent oxide thin-film transistors. Applied Physics Letters, 2010, 97, 092105.                                                                 | 3.3 | 14        |
| 79 | Coupling Top- and Bottom-Gate ZnO Thin Film Transistors for Low Voltage, High Gain Inverter.<br>Electrochemical and Solid-State Letters, 2010, 13, H194.                                                           | 2.2 | 5         |
| 80 | Physical and Electrical Properties of SiO2Layer Synthesized by Eco-Friendly Method. Japanese Journal of Applied Physics, 2010, 49, 05EA02.                                                                         | 1.5 | 4         |
| 81 | Ink-Jet-Printed Zinc–Tin–Oxide Thin-Film Transistors and Circuits With Rapid Thermal Annealing<br>Process. IEEE Electron Device Letters, 2010, 31, 836-838.                                                        | 3.9 | 45        |
| 82 | Effects of the Concentration of Indium-tin-oxide (ITO) Ink on the Characteristics of Directly-printed ITO Thin Films. Journal of the Korean Physical Society, 2010, 57, 1794-1798.                                 | 0.7 | 7         |
| 83 | All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors. Journal Physics D: Applied Physics, 2009, 42, 125102.                                                         | 2.8 | 53        |
| 84 | Effect of Annealing Treatment and Surface Morphology on Power Conversion in Organic<br>Photovoltaics. Japanese Journal of Applied Physics, 2009, 48, 081505.                                                       | 1.5 | 9         |
| 85 | Sr/Ag semitransparent cathodes for top emission organic light-emitting devices. Thin Solid Films, 2009, 517, 2035-2038.                                                                                            | 1.8 | 5         |
| 86 | Environmental and operational stability of solution-processed 6,13-bis(triisopropyl-silylethynyl)<br>pentacene thin film transistors. Organic Electronics, 2009, 10, 486-490.                                      | 2.6 | 77        |
| 87 | High-resolution patterned nanoparticulate Ag electrodes toward all printed organic thin film transistors. Organic Electronics, 2009, 10, 1102-1108.                                                                | 2.6 | 25        |
| 88 | Color Stability of White Organic Light Emitting Diodes as Position of Partially Doped Rubrene in DPVBi<br>Emission Layer. Molecular Crystals and Liquid Crystals, 2009, 499, 66/[388]-74/[396].                    | 0.9 | 0         |
| 89 | High Performance Solution-Processed and Lithographically Patterned Zinc–Tin Oxide Thin-Film<br>Transistors with Good Operational Stability. Electrochemical and Solid-State Letters, 2009, 12, H256.               | 2.2 | 72        |
| 90 | Characteristics of ITO and Overcoat Layer for Full Color Organic Light Emitting Diode with Color<br>Filter. Molecular Crystals and Liquid Crystals, 2009, 499, 58/[380]-65/[387].                                  | 0.9 | 0         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Glycerol-Doped Poly(3,4-ethylenedioxy-thiophene):Poly(styrene sulfonate) Buffer Layer for Improved<br>Power Conversion in Organic Photovoltaic Devices. Journal of the Electrochemical Society, 2009, 156,<br>H782.          | 2.9  | 22        |
| 92  | Roomâ€Temperature Selfâ€Organizing Characteristics of Soluble Acene Fieldâ€Effect Transistors. Advanced<br>Functional Materials, 2008, 18, 560-565.                                                                          | 14.9 | 40        |
| 93  | Development of Ultrafine Indium Tin Oxide (ITO) Nanoparticle for Ink-Jet Printing by Low-Temperature<br>Synthetic Method. IEEE Nanotechnology Magazine, 2008, 7, 172-176.                                                    | 2.0  | 53        |
| 94  | Dynamic Characteristics of Vertically Aligned Liquid Crystal Device Using a Polymer Wall Associated with the Boundary Condition of Alignment Layer. Molecular Crystals and Liquid Crystals, 2007, 476, 115/[361]-123/[369].  | 0.9  | 0         |
| 95  | Hybrid Passivation for a Film-like Organic Light-Emitting Diode using Parylene and Silicon Dioxide.<br>Japanese Journal of Applied Physics, 2007, 46, 810-814.                                                               | 1.5  | 7         |
| 96  | Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors. Applied Physics Letters, 2007, 90, 132106.                                                                         | 3.3  | 140       |
| 97  | Organic thin-film transistors using suspended source/drain electrode structure. Applied Physics<br>Letters, 2007, 91, 042113.                                                                                                | 3.3  | 7         |
| 98  | Spiro-silacycloalkyl Tetraphenylsiloles with a Tunable Exocyclic Ring:Â Preparation, Characterization,<br>and Device Application of 1,1â€~-Silacycloalkyl-2,3,4,5-tetraphenylsiloles. Organometallics, 2007, 26,<br>519-526. | 2.3  | 36        |
| 99  | Fabrication of low-temperature-polysilicon thin-film transistors on flexible substrates using excimer-laser crystallization. Journal of the Society for Information Display, 2007, 15, 1105.                                 | 2.1  | 2         |
| 100 | High-Mobility Organic Transistors Based on Single-Crystalline Microribbons of<br>Triisopropylsilylethynyl Pentacene via Solution-Phase Self-Assembly. Advanced Materials, 2007, 19,<br>678-682.                              | 21.0 | 339       |
| 101 | Effect of synthetic conditions on particle size and photo-luminescence properties of Y2O3:Eu3+<br>nanophosphor. Journal of Electroceramics, 2007, 18, 67-71.                                                                 | 2.0  | 5         |
| 102 | Ca/Ag bilayer cathode for transparent white organic light-emitting devices. Applied Surface Science, 2007, 253, 4249-4253.                                                                                                   | 6.1  | 23        |
| 103 | Green top-emitting organic light emitting device with transparent Baâ^•Ag bilayer cathode. Applied<br>Physics Letters, 2006, 89, 123501.                                                                                     | 3.3  | 18        |
| 104 | Influence of Eu3+ doping content on photoluminescence of Gd2O3:Eu3+ phosphors prepared by liquid-phase reaction method. Journal of Luminescence, 2006, 118, 199-204.                                                         | 3.1  | 27        |
| 105 | Synthesis and characterization of indium tin oxide (ITO) nanoparticle using gas evaporation process.<br>Journal of Electroceramics, 2006, 17, 821-826.                                                                       | 2.0  | 15        |
| 106 | Effects of parylene buffer layer on flexible substrate in organic light emitting diode. Thin Solid Films, 2006, 513, 258-263.                                                                                                | 1.8  | 39        |
| 107 | Transparent White OLEDs Using Ca-Ag Cathode. Molecular Crystals and Liquid Crystals, 2006, 459, 75/[355]-84/[364].                                                                                                           | 0.9  | 0         |
| 108 | Red electrophosphorescent top emission organic light-emitting device with Caâ^•Ag semitransparent cathode. Applied Physics Letters, 2006, 89, 253508.                                                                        | 3.3  | 16        |

| #   | Article                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fabrication of 5,6,11,12 -tetraphenyl-naphthacene doped 4-bis(2,2-diphenylvinyl)-1,1-biphenyl white organic light-emitting device. Applied Physics Letters, 2006, 89, 223514.            | 3.3  | 0         |
| 110 | Efficient red electrophosphorescent top-emitting organic light-emitting devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 232-237. | 3.5  | 11        |
| 111 | Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular<br>Polythiophene Thin Film Transistors. Advanced Functional Materials, 2005, 15, 77-82.  | 14.9 | 441       |
| 112 | Thermal Behavior of SnO2–5 wt % Pd Composite Nanoparticles Fabricated byIn-SituSynthetic Method.<br>Japanese Journal of Applied Physics, 2005, 44, 7698-7702.                            | 1.5  | 6         |
| 113 | Color Tracking Analysis of the Fringe-Field-Switching Cell Using a Liquid Crystal with Negative Dielectric Anisotropy. Japanese Journal of Applied Physics, 2005, 44, 225-228.           | 1.5  | 2         |
| 114 | Low-temperature catalyst adding for tin-oxide nanostructure gas sensors. IEEE Sensors Journal, 2005, 5, 12-19.                                                                           | 4.7  | 6         |
| 115 | Organic thin-film devices on paper substrates. Journal of the Society for Information Display, 2005, 13, 829.                                                                            | 2.1  | 10        |
| 116 | Position Dependent Stress Distribution of Indium-Tin-Oxide on Polymer Substrate by Applying External<br>Bending Force. Japanese Journal of Applied Physics, 2004, 43, 2677-2680.         | 1.5  | 3         |
| 117 | Transient electrophosphorescence in red top-emitting organic light-emitting devices. Applied Physics<br>Letters, 2004, 85, 4771-4773.                                                    | 3.3  | 16        |
| 118 | Organic Thin Film Transistor-Driven Liquid Crystal Displays on Flexible Polymer Substrate. Japanese<br>Journal of Applied Physics, 2004, 43, 3605-3608.                                  | 1.5  | 24        |
| 119 | Control of High Pretilt Angle for Nematic Liquid Crystal on Homeotropic Alignment Layer by In-situ<br>Photoalignment Method. Molecular Crystals and Liquid Crystals, 2004, 412, 269-275. | 0.9  | 6         |
| 120 | Organic TFT Array on a Paper Substrate. IEEE Electron Device Letters, 2004, 25, 702-704.                                                                                                 | 3.9  | 160       |
| 121 | Resistivity Characteristics of Plastic Multi-Barrier ITO Film by the Bending Process. Ferroelectrics, 2004, 303, 155-158.                                                                | 0.6  | 0         |
| 122 | Active-matrix liquid crystal display using solution-based organic thin film transistors on plastic substrates. Displays, 2004, 25, 167-170.                                              | 3.7  | 24        |
| 123 | Realization of an efficient top emission organic light-emitting device with novel electrodes. Thin<br>Solid Films, 2004, 467, 201-208.                                                   | 1.8  | 45        |
| 124 | Effect of low temperature composite catalyst loading (LTC2L) on sensing properties of nano gas sensor. Sensors and Actuators A: Physical, 2004, 112, 80-86.                              | 4.1  | 7         |
| 125 | Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag<br>double layer. Applied Physics Letters, 2004, 84, 4614-4616.                             | 3.3  | 138       |
| 126 | Failure of the top emission organic light-emitting device with a Ca/Ag semitransparent cathode.<br>Synthetic Metals, 2004, 146, 63-68.                                                   | 3.9  | 14        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Electrical and mechanical properties of low temperature evaporated silicon dioxide/polyimide dual-layer insulator for plastic-based polymer transistor. Thin Solid Films, 2003, 429, 231-237. | 1.8 | 16        |
| 128 | Admittance Spectroscopic Characteristics and Equivalent Circuit Modeling of Small Molecule-Based Organic Light Emitting Diodes. Japanese Journal of Applied Physics, 2003, 42, 2715-2718.     | 1.5 | 12        |
| 129 | Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates. Synthetic Metals, 2003, 139, 377-384.                              | 3.9 | 42        |
| 130 | Improvement of luminance efficiency in xenon dielectric barrier discharge flat lamp. IEEE Transactions on Plasma Science, 2003, 31, 176-179.                                                  | 1.3 | 10        |
| 131 | Mechanical Stability of Externally Deformed Indium–Tin–Oxide Films on Polymer Substrates. Japanese<br>Journal of Applied Physics, 2003, 42, 623-629.                                          | 1.5 | 115       |
| 132 | Electro-Mechanical Properties of Metal–Insulator–Metal Device Fabricated on Polymer Substrate<br>Using Low-Temperature Process. Japanese Journal of Applied Physics, 2002, 41, 533-540.       | 1.5 | 6         |
| 133 | High Performance Polymer Thin Film Transistors Array Printed on a Flexible Polycarbonate Substrate.<br>Materials Research Society Symposia Proceedings, 2002, 736, 1.                         | 0.1 | 6         |
| 134 | Electro-structural and Film Growth Properties of Room-temperature Deposited Indium-Tin-Oxide on<br>Polymer Substrates. Materials Research Society Symposia Proceedings, 2002, 747, 1.         | 0.1 | 0         |
| 135 | High-performance polymer tfts printed on a plastic substrate. IEEE Transactions on Electron Devices, 2002, 49, 2008-2015.                                                                     | 3.0 | 60        |
| 136 | Flexible metal–insulator–metal (MIM) devices for plastic film AM-LCD. Current Applied Physics, 2002, 2,<br>245-248.                                                                           | 2.4 | 11        |
| 137 | Analysis of ITO Films Deposited on Various Polymer Substrates for High-Resolution Plastic Film LCDs.<br>Materials Research Society Symposia Proceedings, 2001, 685, 1.                        | 0.1 | 3         |
| 138 | Mechanics of Indium-Tin-Oxide Films on Polymer Substrates with Organic Buffer Layer. Materials<br>Research Society Symposia Proceedings, 2001, 695, 1.                                        | 0.1 | 1         |
| 139 | Electrical and mechanical properties of indiumâ€ŧinâ€oxide films deposited on polymer substrate using<br>organic buffer layer. Journal of Information Display, 2001, 2, 52-60.                | 4.0 | 4         |
| 140 | Deposition of indium–tin-oxide films on polymer substrates for application in plastic-based flat panel displays. Thin Solid Films, 2001, 397, 49-55.                                          | 1.8 | 185       |
| 141 | Chip Bonding on Non-rigid and Flexible Substrates with New Stepped Processes. Japanese Journal of<br>Applied Physics, 2001, 40, 412-418.                                                      | 1.5 | 14        |
| 142 | Glass-to-glass electrostatic bonding for FED tubeless packaging application. Microelectronics<br>Journal, 1998, 29, 839-844.                                                                  | 2.0 | 2         |
| 143 | Time-resolved spectroscopic study of energy transfer in ZnO:EuCl3 phosphors. Journal of<br>Luminescence, 1998, 78, 87-90.                                                                     | 3.1 | 51        |
| 144 | Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors. Applied Physics Letters, 1998, 72, 668-670.                                               | 3.3 | 51        |

| #   | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Experimental and theoretical considerations on evacuation of vacuum package for field emission<br>display. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society<br>B, Microelectronics Processing and Phenomena, 1998, 16, 1236.                            | 1.6 | 13        |
| 146 | Growth and luminescent characteristics of ZnGa[sub 2]O[sub 4] thin film phosphor prepared by radio<br>frequency magnetron sputtering. Journal of Vacuum Science & Technology an Official Journal of the<br>American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1239. | 1.6 | 13        |
| 147 | Ni Electroless Plating Process for Solder Bump Chip on Glass Technology. Japanese Journal of Applied<br>Physics, 1997, 36, 2091-2095.                                                                                                                                                            | 1.5 | 9         |
| 148 | Simulation of the degradation behavior of the hydrogen absorption kinetics of LaNi5 under the cyclic operations in H2-CO and H2-O2. Journal of the Less Common Metals, 1990, 157, 187-199.                                                                                                       | 0.8 | 6         |
| 149 | Hydriding kinetics of LaNi5 and LaNi4.7Al0.3. International Journal of Hydrogen Energy, 1989, 14, 181-186.                                                                                                                                                                                       | 7.1 | 20        |
| 150 | The effect of CO impurity on the hydrogenation properties of LaNi5, LaNi4.7Al0.3 and MmNi4.5Al0.5 during hydriding-dehydriding cycling. Journal of the Less Common Metals, 1989, 152, 319-327.                                                                                                   | 0.8 | 19        |
| 151 | Influence of oxygen impurity on the hydrogenation properties of LaNi5, LaNi4.7Al0.3 and MmNi4.5Al0.5<br>during long-term pressure-induced hydriding-dehydriding cycling. Journal of the Less Common<br>Metals, 1989, 152, 329-338.                                                               | 0.8 | 28        |
| 152 | Thermal Desorption Study of LaNi5 Degraded by Pressure Cycling*. Zeitschrift Fur Physikalische<br>Chemie, 1989, 164, 1291-1292.                                                                                                                                                                  | 2.8 | 2         |
| 153 | An investigation of the intrinsic degradation mechanism of LaNi5 by thermal desorption technique.<br>International Journal of Hydrogen Energy, 1988, 13, 577-581.                                                                                                                                | 7.1 | 30        |
| 154 | Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties. Journal of the<br>Less Common Metals, 1986, 119, 237-246.                                                                                                                                                   | 0.8 | 32        |