Kaoru Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3474413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SLAM (CD150)-Independent Measles Virus Entry as Revealed by Recombinant Virus Expressing Green Fluorescent Protein. Journal of Virology, 2002, 76, 6743-6749.	3.4	199
2	Measles virus V protein blocks interferon (IFN)-α/β but not IFN-γ signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Letters, 2003, 545, 177-182.	2.8	175
3	Recovery of Pathogenic Measles Virus from Cloned cDNA. Journal of Virology, 2000, 74, 6643-6647.	3.4	153
4	Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. Journal of General Virology, 2004, 85, 2991-2999.	2.9	129
5	Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochemical and Biophysical Research Communications, 2003, 311, 39-48.	2.1	92
6	Trisaccharide containing α2,3-linked sialic acid is a receptor for mumps virus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11579-11584.	7.1	79
7	Stringent Requirement for the C Protein of Wild-Type Measles Virus for Growth both In Vitro and in Macaques. Journal of Virology, 2005, 79, 7838-7844.	3.4	71
8	Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and vero cell-isolated measles viruses from the same patient. Virus Genes, 2000, 20, 253-257.	1.6	65
9	Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM(CD150)-independent mechanism. Virus Research, 2003, 94, 11-16.	2.2	65
10	Influenza A Virus Hemagglutinin and Neuraminidase Mutually Accelerate Their Apical Targeting through Clustering of Lipid Rafts. Journal of Virology, 2014, 88, 10039-10055.	3.4	54
11	The F Gene of the Osaka-2 Strain of Measles Virus Derived from a Case of Subacute Sclerosing Panencephalitis Is a Major Determinant of Neurovirulence. Journal of Virology, 2010, 84, 11189-11199.	3.4	40
12	Recombinant Wild-Type and Edmonston Strain Measles Viruses Bearing Heterologous H Proteins: Role of H Protein in Cell Fusion and Host Cell Specificity. Journal of Virology, 2002, 76, 4891-4900.	3.4	38
13	Enhancing of measles virus infection by magnetofection. Journal of Virological Methods, 2005, 128, 61-66.	2.1	37
14	Efficient rescue of measles virus from cloned cDNA using SLAM-expressing Chinese hamster ovary cells. Virus Research, 2005, 108, 161-165.	2.2	31
15	The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes and Infection, 2007, 9, 344-354.	1.9	29
16	F-Actin Modulates Measles Virus Cell-Cell Fusion and Assembly by Altering the Interaction between the Matrix Protein and the Cytoplasmic Tail of Hemagglutinin. Journal of Virology, 2013, 87, 1974-1984.	3.4	27
17	Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. Journal of General Virology, 2004, 85, 3001-3006.	2.9	22
18	Wild-Type Measles Virus with the Hemagglutinin Protein of the Edmonston Vaccine Strain Retains Wild-Type Tropism in Macaques. Journal of Virology, 2012, 86, 3027-3037.	3.4	22

Kaoru Takeuchi

#	Article	IF	CITATIONS
19	Complete Genome Sequence of the First Isolate of Genotype C Bovine Parainfluenza Virus Type 3 in Japan. Genome Announcements, 2014, 2, .	0.8	19
20	Cell Tropism and Pathogenesis of Measles Virus in Monkeys. Frontiers in Microbiology, 2012, 3, 14.	3.5	13
21	Mode of swine hepatitis E virus infection and replication in primary human hepatocytes. Journal of General Virology, 2014, 95, 2677-2682.	2.9	13
22	Complete Genome Sequences of Bovine Parainfluenza Virus Type 3 Strain BN-1 and Vaccine Strain BN-CE. Genome Announcements, 2013, 1, .	0.8	12
23	Amino acid substitutions in the heptad repeat A and C regions of the F protein responsible for neurovirulence of measles virus Osaka-1 strain from a patient with subacute sclerosing panencephalitis. Virology, 2016, 487, 141-149.	2.4	12
24	Previously Unrecognized Amino Acid Substitutions in the Hemagglutinin and Fusion Proteins of Measles Virus Modulate Cell-Cell Fusion, Hemadsorption, Virus Growth, and Penetration Rate. Journal of Virology, 2009, 83, 8713-8721.	3.4	10
25	Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. Frontiers in Plant Science, 2021, 12, 717952.	3.6	10
26	The detection of trans gene fragments of hEPO in gene doping model mice by Taqman qPCR assay. PeerJ, 2020, 8, e8595.	2.0	10
27	Infection of the upper respiratory tract of hamsters by the bovine parainfluenza virus type 3 BN-1 strain expressing enhanced green fluorescent protein. Virology, 2015, 476, 134-140.	2.4	8
28	Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice. Virology, 2014, 462-463, 91-97.	2.4	7
29	Detection of Transgenes in Gene Delivery Model Mice by Adenoviral Vector Using ddPCR. Genes, 2019, 10, 436.	2.4	6
30	Influence of Intermittent Cold Stimulations on CREB and Its Targeting Genes in Muscle: Investigations into Molecular Mechanisms of Local Cryotherapy. International Journal of Molecular Sciences, 2020, 21, 4588.	4.1	5
31	Amino- and carboxyl-terminal ends of the bovine parainfluenza virus type 3 matrix protein are important for virion and virus-like particle release. Virology, 2021, 561, 17-27.	2.4	4
32	Toward understanding the pathogenicity of wild-type measles virus by reverse genetics. Japanese Journal of Infectious Diseases, 2002, 55, 143-9.	1.2	4
33	Differential induction of type I interferons in macaques by wildâ€ŧype measles virus alone or with the hemagglutinin protein of the Edmonston vaccine strain. Microbiology and Immunology, 2016, 60, 501-505.	1.4	3
34	Phenotypic characterization of cell culture-derived hepatitis E virus subjected to different chemical treatments: Application in virus removal via nanofiltration. Journal of Virological Methods, 2021, 296, 114244.	2.1	2
35	Reciprocal complementation of bovine parainfluenza virus type 3 lacking either the membrane or fusion gene. Journal of Virological Methods, 2017, 249, 25-30.	2.1	1
36	Remarkable similarity in genome nucleotide sequences between the Schwarz FF-8 and AIK-C measles virus vaccine strains and apparent nucleotide differences in the phosphoprotein gene. Microbiology and Immunology, 2011, 55, 518-524.	1.4	0

#	Article	IF	CITATIONS
37	A single L288I substitution in the fusion protein of bovine parainfluenza virus type 3 enhances virus growth in semi-suitable cell lines. Archives of Virology, 2017, 162, 2409-2413.	2.1	0