Petra Gener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3473067/publications.pdf

Version: 2024-02-01

840776 1058476 15 414 11 14 citations h-index g-index papers 15 15 15 686 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. , 2021, 4, 44-68.		23
2	Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine, 2021, 16, 1471-1485.	3.3	10
3	Zileutonâ,,¢ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102106.	3.3	44
4	Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5381-5388.	8.0	15
5	Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics, 2020, 12, 1146.	4.5	26
6	The potential of nanomedicine to alter cancer stem cellÂdynamics: the impact of extracellular vesicles. Nanomedicine, 2020, 15, 2785-2800.	3. 3	10
7	Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells. Cancers, 2019, 11, 1058.	3.7	32
8	AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells. Drug Delivery, 2018, 25, 961-972.	5 . 7	32
9	Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin. Chemical Engineering Journal, 2018, 340, 81-93.	12.7	26
10	Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells International, 2018, 2018, 1-12.	2.5	17
11	Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. Precision Nanomedicine, 2018, 1, 86-105.	0.8	6
12	Cancer stem cells and personalized cancer nanomedicine. Nanomedicine, 2016, 11, 307-320.	3.3	27
13	Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1621-1631.	3.3	39
14	Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1883-1892.	3.3	69
15	Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. International Journal of Pharmaceutics, 2014, 473, 286-295.	5.2	38