David Brough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472910/publications.pdf

Version: 2024-02-01

84 papers 7,215 citations

76326 40 h-index 81 g-index

92 all docs 92 docs citations 92 times ranked 12507 citing authors

#	Article	IF	CITATIONS
1	Beyond Antoni: A Surgeon's Guide to the Vestibular Schwannoma Microenvironment. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, 001-010.	0.8	4
2	Renal hemofiltration prevents metabolic acidosis and reduces inflammation during normothermic machine perfusion of the vascularized composite allograft: A preclinical study. Artificial Organs, 2022, 46, 259-272.	1.9	4
3	Co-design of a Smartphone App for People Living With Dementia by Applying Agile, Iterative Co-design Principles: Development and Usability Study. JMIR MHealth and UHealth, 2022, 10, e24483.	3.7	26
4	<scp>LRRC8A</scp> is dispensable for a variety of microglial functions and response to acute stroke. Glia, 2022, 70, 1068-1083.	4.9	7
5	Itaconate and fumarate derivatives inhibit priming and activation of the canonical NLRP3 inflammasome in macrophages. Immunology, 2022, 165, 460-480.	4.4	33
6	The two pore potassium channel <scp>THIK</scp> â€1 regulates <scp>NLRP3</scp> inflammasome activation. Glia, 2022, 70, 1301-1316.	4.9	19
7	Bafilomycin A1 enhances NLRP3 inflammasome activation in human monocytes independent of lysosomal acidification. FEBS Journal, 2021, 288, 3186-3196.	4.7	10
8	Inhibition of the NLRP3 inflammasome by HSP90 inhibitors. Immunology, 2021, 162, 84-91.	4.4	36
9	Zinc Status Alters Alzheimer's Disease Progression through NLRP3-Dependent Inflammation. Journal of Neuroscience, 2021, 41, 3025-3038.	3.6	41
10	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluationâ€. Genome Biology, 2021, 22, 99.	8.8	4
11	A phenotypic high-content, high-throughput screen identifies inhibitors of NLRP3 inflammasome activation. Scientific Reports, 2021, 11, 15319.	3.3	10
12	Evidence That a TRPA1-Mediated Murine Model of Temporomandibular Joint Pain Involves NLRP3 Inflammasome Activation. Pharmaceuticals, 2021, 14, 1073.	3.8	1
13	Pro-IL- $1\hat{l}^2$ Is an Early Prognostic Indicator of Severe Donor Lung Injury During Ex Vivo Lung Perfusion. Transplantation, 2021, 105, 768-774.	1.0	7
14	Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine and Growth Factor Reviews, 2020, 55, 15-25.	7.2	66
15	Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Frontiers in Immunology, 2020, 11, 565924.	4.8	92
16	Anti-inflammatories in Alzheimer's diseaseâ€"potential therapy or spurious correlate?. Brain Communications, 2020, 2, fcaa109.	3.3	52
17	Inhibiting the NLRP3 Inflammasome. Molecules, 2020, 25, 5533.	3.8	66
18	Selective inhibition of the K ⁺ efflux sensitive NLRP3 pathway by Cl ^{â^'} channel modulation. Chemical Science, 2020, 11, 11720-11728.	7.4	9

#	Article	IF	CITATIONS
19	Value of dynamic clinical and biomarker data for mortality risk prediction in COVID-19: a multicentre retrospective cohort study. BMJ Open, 2020, 10, e041983.	1.9	14
20	Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. Journal of Alzheimer's Disease, 2020, 75, 1417-1435.	2.6	18
21	The inflammatory microenvironment in vestibular schwannoma. Neuro-Oncology Advances, 2020, 2, vdaa023.	0.7	35
22	Anakinra in COVID-19: important considerations for clinical trials. Lancet Rheumatology, The, 2020, 2, e379-e381.	3.9	47
23	The NLRP3–inflammasome as a sensor of organelle dysfunction. Journal of Cell Biology, 2020, 219, .	5.2	79
24	Hallmarks of NLRP3 inflammasome activation are observed in organotypic hippocampal slice culture. Immunology, 2020, 161, 39-52.	4.4	12
25	Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genetics, 2020, 16, e1009084.	3.5	29
26	Haematopoietic stem cell gene therapy with <scp>IL</scp> â€lRa rescues cognitive loss in mucopolysaccharidosis <scp>IIIA</scp> . EMBO Molecular Medicine, 2020, 12, e11185.	6.9	31
27	LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome activation. ELife, 2020, 9, .	6.0	29
28	Fabrication of Amyloid-β-Secreting Alginate Microbeads for Use in Modelling Alzheimer's Disease. Journal of Visualized Experiments, 2019, , .	0.3	3
29	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
30	Inflammasome-Independent Role for NLRP3 in Controlling Innate Antihelminth Immunity and Tissue Repair in the Lung. Journal of Immunology, 2019, 203, 2724-2734.	0.8	20
31	Extent of Ischemic Brain Injury After Thrombotic Stroke Is Independent of the NLRP3 (NACHT, LRR and) Tj ETQq1 1	0.78431 2.0	4 rgBT /Ove
32	Cathelicidin is a "fire alarmâ€; generating protective NLRP3-dependent airway epithelial cell inflammatory responses during infection with Pseudomonas aeruginosa. PLoS Pathogens, 2019, 15, e1007694.	4.7	35
33	The three cytokines IL- 1^2 , IL-18, and IL- 1^2 share related but distinct secretory routes. Journal of Biological Chemistry, 2019, 294, 8325-8335.	3.4	52
34	Microglial Priming as Trained Immunity in the Brain. Neuroscience, 2019, 405, 47-54.	2.3	68
35	Development of a characterised tool kit for the interrogation of NLRP3 inflammasome-dependent responses. Scientific Reports, 2018, 8, 5667.	3.3	27
36	Design, Synthesis and Evaluation of Oxazaborine Inhibitors of the NLRP3 Inflammasome. ChemMedChem, 2018, 13, 312-320.	3.2	23

#	Article	IF	CITATIONS
37	Redefining the ancestral origins of the interleukin-1 superfamily. Nature Communications, 2018, 9, 1156.	12.8	60
38	Assessing Inflammation in Acute Intracerebral Hemorrhage with PK11195 PET and Dynamic Contrast-Enhanced MRI., 2018, 28, 158-161.		15
39	Synthesis and antibacterial activities of enamine derivatives of dehydroacetic acid. Medicinal Chemistry Research, 2018, 27, 884-889.	2.4	13
40	Small, Thin Graphene Oxide Is Anti-inflammatory Activating Nuclear Factor Erythroid 2-Related Factor 2 <i>via</i> Metabolic Reprogramming. ACS Nano, 2018, 12, 11949-11962.	14.6	43
41	Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer's Disease Data. Genes, 2018, 9, 593.	2.4	15
42	Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9371-E9380.	7.1	131
43	USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Reports, 2018, 19, .	4.5	131
44	Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery?. SLAS Discovery, 2018, 23, 991-1017.	2.7	17
45	Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7404-7409.	7.1	37
46	Inflammasomes as therapeutic targets for <scp>A</scp> lzheimer's disease. Brain Pathology, 2017, 27, 223-234.	4.1	110
47	Boron-Based Inhibitors of the NLRP3 Inflammasome. Cell Chemical Biology, 2017, 24, 1321-1335.e5.	5.2	77
48	An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL- $1\hat{1}^2$. Journal of Cell Science, 2017, 130, 3197-3202.	2.0	39
49	Salmonella typhimurium-induced IL-1 release from primary human monocytes requires NLRP3 and can occur in the absence of pyroptosis. Scientific Reports, 2017, 7, 6861.	3.3	30
50	P2X7 receptorâ€dependent tuning of gut epithelial responses to infection. Immunology and Cell Biology, 2017, 95, 178-188.	2.3	35
51	CRISPR/Cas9 mediated mutation of mouse IL- $1\hat{l}\pm$ nuclear localisation sequence abolishes expression. Scientific Reports, 2017, 7, 17077.	3.3	2
52	Unconventional Pathways of Secretion Contribute to Inflammation. International Journal of Molecular Sciences, 2017, 18, 102.	4.1	43
53	Investigating IL- $\hat{1}^2$ Secretion Using Real-Time Single-Cell Imaging. Methods in Molecular Biology, 2016, 1417, 75-88.	0.9	0
54	Inflammasomes link vascular disease with neuroinflammation and brain disorders. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1668-1685.	4.3	129

#	Article	IF	CITATIONS
55	Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nature Communications, 2016, 7, 12504.	12.8	328
56	Inhibiting the Inflammasome: A Chemical Perspective. Journal of Medicinal Chemistry, 2016, 59, 1691-1710.	6.4	113
57	Potassium efflux fires the canon: Potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. European Journal of Immunology, 2015, 45, 2758-2761.	2.9	46
58	Interleukinâ€1 as a pharmacological target in acute brain injury. Experimental Physiology, 2015, 100, 1488-1494.	2.0	26
59	Interleukinâ€1α and brain inflammation. IUBMB Life, 2015, 67, 323-330.	3.4	36
60	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
61	Novel perspectives on non-canonical inflammasome activation. ImmunoTargets and Therapy, 2015, 4, 131.	5.8	39
62	Acid-dependent Interleukin-1 (IL-1) Cleavage Limits Available Pro-IL- $1\hat{l}^2$ for Caspase-1 Cleavage. Journal of Biological Chemistry, 2015, 290, 25374-25381.	3.4	13
63	Apoptosis-Associated Speck-like Protein Containing a CARD Forms Specks but Does Not Activate Caspase-1 in the Absence of NLRP3 during Macrophage Swelling. Journal of Immunology, 2015, 194, 1261-1273.	0.8	83
64	AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4050-4055.	7.1	211
65	P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages. Cytokine, 2015, 74, 293-304.	3.2	28
66	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
67	Release of Interleukin- \hat{l} or Interleukin- \hat{l}^2 Depends on Mechanism of Cell Death. Journal of Biological Chemistry, 2014, 289, 15942-15950.	3.4	133
68	Dendritic Cell IL- $1\hat{l}$ ± and IL- $1\hat{l}^2$ Are Polyubiquitinated and Degraded by the Proteasome. Journal of Biological Chemistry, 2014, 289, 35582-35592.	3.4	54
69	The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology, 2014, 15, 738-748.	14.5	668
70	Deubiquitinases Regulate the Activity of Caspase-1 and Interleukin- $1\hat{l}^2$ Secretion via Assembly of the Inflammasome. Journal of Biological Chemistry, 2013, 288, 2721-2733.	3.4	154
71	Microglia and macrophages differentially modulate cell death after brain injury caused by oxygenâ€glucose deprivation in organotypic brain slices. Glia, 2013, 61, 813-824.	4.9	143
72	Acidosis Drives Damage-associated Molecular Pattern (DAMP)-induced Interleukin-1 Secretion via a Caspase-1-independent Pathway. Journal of Biological Chemistry, 2013, 288, 30485-30494.	3.4	50

#	Article	IF	CITATIONS
73	NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Frontiers in Immunology, 2012, 3, 288.	4.8	161
74	Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. DMM Disease Models and Mechanisms, 2012, 5, 823-33.	2.4	89
75	Sphingosine regulates the NLRP3â€inflammasome and ILâ€1 β release from macrophages. European Journal of Immunology, 2012, 42, 716-725.	2.9	79
76	Understanding the mechanism of IL- $1\hat{l}^2$ secretion. Cytokine and Growth Factor Reviews, 2011, 22, 189-195.	7.2	970
77	Regulation of interleukin-1 in acute brain injury. Trends in Pharmacological Sciences, 2011, 32, 617-622.	8.7	71
78	Pannexinâ€1â€dependent caspaseâ€1 activation and secretion of ILâ€1β is regulated by zinc. European Journal o Immunology, 2009, 39, 352-358.	of 2.9	52
79	Nuclear retention of ILâ€1α by necrotic cells: A mechanism to dampen sterile inflammation. European Journal of Immunology, 2009, 39, 2973-2980.	2.9	45
80	The Dynamics and Mechanisms of Interleukinâ€1α and β Nuclear Import. Traffic, 2009, 10, 16-25.	2.7	38
81	Caspase-1-dependent processing of pro-interleukin- $\hat{\Pi}^2$ is cytosolic and precedes cell death. Journal of Cell Science, 2007, 120, 772-781.	2.0	210
82	A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat. Neuropharmacology, 2007, 53, 638-642.	4.1	57
83	Ca2+ Stores and Ca2+ Entry Differentially Contribute to the Release of IL- $1\hat{l}^2$ and IL- $1\hat{l}^2$ from Murine Macrophages. Journal of Immunology, 2003, 170, 3029-3036.	0.8	139
84	Purinergic (P2X7) Receptor Activation of Microglia Induces Cell Death via an Interleukin-1-Independent Mechanism. Molecular and Cellular Neurosciences, 2002, 19, 272-280.	2.2	122