
Genping Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3472364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Insights into Palladium/Boron-Catalyzed Allylic Substitution of Vinylethylene Carbonates with Water: Outer-Sphere versus Inner-Sphere Pathway and Origins of Regio- and Enantioselectivities. ACS Catalysis, 2022, 12, 2722-2728.	11.2	11
2	Palladium-catalyzed regio- and chemoselective double-alkoxycarbonylation of 1,3-diynes: a computational study. Organic Chemistry Frontiers, 2022, 9, 2697-2707.	4.5	4
3	Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroarylation/Cyclization of 1,6-Enynes with <i>N</i> -Pyridylindoles. Journal of Organic Chemistry, 2022, 87, 6438-6443.	3.2	15
4	Nickel-Catalyzed Cross-Coupling of Acyl Chloride with Racemic α-Trifluoromethyl Bromide to Access Chiral α-Trifluoromethyl Ketones. Organic Letters, 2022, 24, 4322-4327.	4.6	12
5	Palladium and Amino Acid Co-Catalyzed Highly Regio- and Enantioselective Hydroarylation of Unbiased Alkenes. ACS Catalysis, 2022, 12, 8667-8675.	11.2	5
6	Computational and Experimental Study of Turboâ€Organomagnesium Amide Reagents: Cubane Aggregates as Reactive Intermediates in Pummerer Coupling. Chemistry - A European Journal, 2021, 27, 2767-2773.	3.3	4
7	Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study. Chinese Chemical Letters, 2021, 32, 9-12.	9.0	13
8	Rhodium(<scp>i</scp>)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Organic Chemistry Frontiers, 2021, 8, 3320-3331.	4.5	7
9	Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study. Chinese Chemical Letters, 2021, 32, 2769-2772.	9.0	4
10	Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α,β-unsaturated ketones: A computational study. Chinese Chemical Letters, 2021, 32, 3015-3018.	9.0	6
11	A Computational Mechanistic Analysis of Iridium-Catalyzed C(sp ³)–H Borylation Reveals a One-Stone–Two-Birds Strategy to Enhance Catalytic Activity. ACS Catalysis, 2021, 11, 4833-4847.	11.2	14
12	Copper atalyzed Highly Selective Protoboration of CF ₃ ontaining 1,3â€Đienes. Angewandte Chemie, 2021, 133, 20539-20545.	2.0	2
13	Copper atalyzed Highly Selective Protoboration of CF ₃ ontaining 1,3â€Đienes. Angewandte Chemie - International Edition, 2021, 60, 20376-20382.	13.8	19
14	Pd-Catalyzed tandem C–C/C–O/C–H single bond cleavage of 3-allyloxybenzocyclobutenols. Organic Chemistry Frontiers, 2021, 8, 3867-3875.	4.5	9
15	H ₃ PO ₂ -Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles. ACS Catalysis, 2020, 10, 1344-1352.	11.2	23
16	Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes <i>via</i> dynamic kinetic resolution: a computational study. Organic Chemistry Frontiers, 2020, 7, 1502-1511.	4.5	21
17	NiH atalyzed Migratory Defluorinative Olefin Cross oupling: Trifluoromethyl‧ubstituted Alkenes as Acceptor Olefins to Form gem â€Difluoroalkenes. Angewandte Chemie, 2020, 132, 5436-5440.	2.0	22
18	NiHâ€Catalyzed Migratory Defluorinative Olefin Crossâ€Coupling: Trifluoromethyl‣ubstituted Alkenes as Acceptor Olefins to Form <i>gem</i> â€Difluoroalkenes. Angewandte Chemie - International Edition, 2020, 59, 5398-5402.	13.8	108

#	Article	IF	CITATIONS
19	A Mechanistic Analysis of the Palladiumâ€Catalyzed Formation of Branched Allylic Amines Reveals the Origin of the Regio―and Enantioselectivity through a Unique Innerâ€Sphere Pathway. Angewandte Chemie - International Edition, 2019, 58, 14694-14702.	13.8	54
20	A Mechanistic Analysis of the Palladiumâ€Catalyzed Formation of Branched Allylic Amines Reveals the Origin of the Regio―and Enantioselectivity through a Unique Innerâ€6phere Pathway. Angewandte Chemie, 2019, 131, 14836-14844.	2.0	11
21	Mechanism and Origins of Enantioselectivity of Iridium-Catalyzed Intramolecular Silylation of Unactivated C(sp ³)–H Bonds. Journal of Organic Chemistry, 2019, 84, 2372-2376.	3.2	18
22	Mechanism and Origins of Regioselectivity of Copper-Catalyzed Borocyanation of 2-Aryl-Substituted 1,3-Dienes: A Computational Study. Journal of Organic Chemistry, 2019, 84, 5514-5523.	3.2	42
23	A Highly Active Catalyst System for Suzuki–Miyaura Coupling of Aryl Chlorides. Organometallics, 2019, 38, 1459-1467.	2.3	25
24	Influence of <i>N</i> -Heterocyclic Carbene Steric Bulk on Selectivity in Nickel Catalyzed C–H Bond Silylation, Germylation, and Stannylation. Organometallics, 2019, 38, 436-450.	2.3	25
25	Mechanism and origins of the directing group-controlled <i>endo</i> - <i>versus exo</i> -selectivity of iridium-catalysed intramolecular hydroalkenylation of 1,1-disubstituted alkenes. Chemical Communications, 2018, 54, 2678-2681.	4.1	18
26	Mechanism and Origins of Regio- and Enantioselectivities of Iridium-Catalyzed Hydroarylation of Alkenyl Ethers. Journal of Organic Chemistry, 2018, 83, 2937-2947.	3.2	42
27	Mechanism, selectivity, and reactivity of iridium- and rhodium-catalyzed intermolecular ketone α-alkylation with unactivated olefins <i>via</i> an enamide directing strategy. Catalysis Science and Technology, 2018, 8, 2417-2426.	4.1	36
28	Mechanism of rhodium(III)-catalyzed formal C(sp3) H activation/spiroannulation of α-arylidene pyrazolones with alkynes: A computational study. Chinese Chemical Letters, 2018, 29, 1355-1358.	9.0	16
29	Mechanism and origins of chemo- and regioselectivities of (NHC)NiH-catalyzed cross-hydroalkenylation of vinyl ethers with α-olefins: a computational study. Organic Chemistry Frontiers, 2018, 5, 3410-3420.	4.5	8
30	Mechanisms of Rhodium(III)-Catalyzed C–H Functionalizations of Benzamides with α,α-Difluoromethylene Alkynes. Journal of Organic Chemistry, 2018, 83, 9220-9230.	3.2	34
31	Mechanism and Origins of Regio- and Stereoselectivities in Iridium-Catalyzed Isomerization of 1-Alkenes to trans-2-Alkenes. Organic Letters, 2018, 20, 5410-5413.	4.6	21
32	Mechanism and origins of selectivity in rhodium-catalyzed intermolecular [3 + 2] cycloadditions of vinylaziridines with allenes. Organic Chemistry Frontiers, 2017, 4, 587-596.	4.5	15
33	Mechanism and Stereoselectivity of the BINOL-Catalyzed Allylboration of Skatoles. Organic Letters, 2017, 19, 5904-5907.	4.6	21
34	Synthesis of 4-benzylpyridines via Pd-catalyzed CH ₃ -arylation of 4-picoline. Organic and Biomolecular Chemistry, 2017, 15, 7509-7512.	2.8	8
35	Mechanism and Origins of the Chemo―and Regioselectivities in Nickel atalyzed Intermolecular Cycloadditions of Benzocyclobutenones with 1,3â€Đienes. Chemistry - A European Journal, 2017, 23, 12593-12603.	3.3	14
36	Mechanism and Origins of Ligandâ€Controlled Selectivity of Rhodiumâ€Catalyzed Intermolecular Cycloadditions of Vinylaziridines with Alkynes. ChemCatChem, 2016, 8, 2549-2556.	3.7	20

GENPING HUANG

#	Article	IF	CITATIONS
37	Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology. Accounts of Chemical Research, 2016, 49, 1006-1018.	15.6	73
38	Mechanism and Selectivity of Ru ^{II} ―and Rh ^{III} â€Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a Câ^H Activation/Dearomatization Strategy. Chemistry - A European Journal, 2016, 22, 9356-9365.	3.3	42
39	Mechanism of iridium-catalysed branched-selective hydroarylation of vinyl ethers: a computational study. Dalton Transactions, 2016, 45, 3552-3557.	3.3	48
40	Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer. Synlett, 2016, 27, 173-176.	1.8	3
41	Mechanism and Origins of Ligand-Controlled Linear Versus Branched Selectivity of Iridium-Catalyzed Hydroarylation of Alkenes. ACS Catalysis, 2016, 6, 809-820.	11.2	114
42	Facile Alderâ€Ene Reactions of Silylallenes Involving an Allenic C(sp ²)H Bond. Chemistry - A European Journal, 2015, 21, 17210-17214.	3.3	15
43	Catalyst-Controlled C–C σ Bond Cleavages in Metal Halide-Catalyzed Cycloisomerization of 3-Acylcyclopropenes via a Formal 1,1-Halometalation Mechanism: Insights from Quantum Chemical Calculations. ACS Catalysis, 2015, 5, 859-868.	11.2	33
44	Mechanism and Selectivity in Rhodium-Catalyzed [7 + 2] Cycloaddition and Cyclopropanation/Cyclization of Allenylcyclopentane-alkynes: Metallacycle-Directed C(sp ³)-C(sp ³) vs C(sp ³)-H Activation. Journal of Organic Chemistry, 2015, 80, 7564-7571.	3.2	29
45	Mechanism of Rhodium-Catalyzed Cyclopropanation/Cyclization of Allenynes. Organic Letters, 2015, 17, 1994-1997.	4.6	30
46	BrÃ,nsted Acid-Catalyzed Intramolecular Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer. Journal of the American Chemical Society, 2015, 137, 4646-4649.	13.7	58
47	Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp ³)–H borylation of chlorosilanes. Chemical Science, 2015, 6, 1735-1746.	7.4	63
48	Mechanisms of the PtCl2-Catalyzed Intramolecular Cyclization of o-Isopropyl-Substituted Aryl Alkynes for the Synthesis of Indenes and Comparison of Three sp3 C–H Bond Activation Modes. Journal of Organic Chemistry, 2014, 79, 5684-5696.	3.2	31
49	Stereoselective allylboration of imines and indoles under mild conditions. An <i>in situ E</i> / <i>Z</i> isomerization of imines by allylboroxines. Chemical Science, 2014, 5, 2732-2738.	7.4	54
50	Theoretical Studies on the Mechanism of the C–H Amination of Silyl Cyclopropenes by Azodicarboxylates. Journal of Organic Chemistry, 2013, 78, 988-995.	3.2	17
51	Mechanism and Selectivity of Rhodium-Catalyzed 1:2 Coupling of Aldehydes and Allenes. Journal of the American Chemical Society, 2013, 135, 7647-7659.	13.7	22
52	Reactivity of Alkynyl Metal Carbenoids: DFT Study on the Pt-Catalyzed Cyclopropanation of Propargyl Ester Containing 1,3-Diynes. Organic Letters, 2012, 14, 3850-3853.	4.6	12
53	Computational Elucidation of the Internal Oxidant-Controlled Reaction Pathways in Rh(III)-Catalyzed Aromatic C–H Functionalization. Journal of Organic Chemistry, 2012, 77, 3017-3024.	3.2	206
54	Mechanism of the N-protecting group dependent annulations of 3-aryloxy alkynyl indoles under gold catalysis: a computational study. Organic and Biomolecular Chemistry, 2012, 10, 4417.	2.8	23

GENPING HUANG

#	Article	IF	CITATIONS
55	Gallium Trichloride Catalyzed Hydroamination of Alkynes: Scope, Limitation, and Mechanistic Studies by DFT. European Journal of Organic Chemistry, 2012, 2012, 5564-5572.	2.4	26
56	Formal Câ \in "H amination of cyclopropenes. Chemical Communications, 2012, 48, 10990.	4.1	9
57	Mechanism of the Transitionâ€Metalâ€Catalyzed Hydroarylation of Bromoâ€Alkynes Revisited: Hydrogen versus Bromine Migration. Chemistry - A European Journal, 2012, 18, 5401-5415.	3.3	52
58	Rhodium or palladium-catalyzed cascade aryl addition/intramolecular lactonization of phthalaldehydonitrile to access 3-aryl and 3-alkenyl phthalides. Tetrahedron, 2011, 67, 4879-4886.	1.9	17
59	Mechanisms of the Au- and Pt-Catalyzed Intramolecular Acetylenic Schmidt Reactions: A DFT Study. Journal of Organic Chemistry, 2010, 75, 7842-7854.	3.2	57
60	Substituent effects on the tautomerism of monochalcogenocarboxylic acids XC(O)YH (X=H, F, NH2,) Tj ETQq0 0 896, 80-84.	0 rgBT /0 1.5	verlock 10 Tf 9
61	Mechanism and origins of enantioselectivity of cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes with aldehydes. Organic Chemistry Frontiers, 0, , .	4.5	8
62	Off ycle Catalyst Cooperativity in Amine/Transition Metal Combined Catalysis: Bicyclo[3.2.0]heptanes as Key Species in Co atalytic Enantioselective Carbocyclizations. Advanced Synthesis and Catalysis, 0, ,	4.3	0

as Key Species in Co atalytic Enantioselective Carbocyclizations. Advanced Synthesis and Catalysis, 0, , 62 4.3

.