Thomas W Okita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3470873/publications.pdf

Version: 2024-02-01

159 papers 7,588 citations

50 h-index 66788 78 g-index

164 all docs

164 docs citations

times ranked

164

3633 citing authors

#	Article	IF	CITATIONS
1	The Rice Plastidial Phosphorylase Participates Directly in Both Sink and Source Processes. Plant and Cell Physiology, 2021, 62, 125-142.	1.5	2
2	A co-fractionation mass spectrometry-based prediction of protein complex assemblies in the developing rice aleurone-subaleurone. Plant Cell, 2021, 33, 2965-2980.	3.1	5
3	Source-Sink Relationships and Its Effect on Plant Productivity: Manipulation of Primary Carbon and Starch Metabolism. Concepts and Strategies in Plant Sciences, 2021, , 1-31.	0.6	5
4	The plastid phosphorylase as a multiple-role player in plant metabolism. Plant Science, 2020, 290, 110303.	1.7	13
5	Zipcode RNA-Binding Proteins and Membrane Trafficking Proteins Cooperate to Transport Glutelin mRNAs in Rice Endosperm. Plant Cell, 2020, 32, 2566-2581.	3.1	12
6	mRNA Localization in Plant Cells. Plant Physiology, 2020, 182, 97-109.	2.3	38
7	Targeted Endoplasmic Reticulum Localization of Storage Protein mRNAs Requires the RNA-Binding Protein RBP-L. Plant Physiology, 2019, 179, 1111-1131.	2.3	25
8	Mechanism Underlying Heat Stability of the Rice Endosperm Cytosolic ADP-Glucose Pyrophosphorylase. Frontiers in Plant Science, 2019, 10, 70.	1.7	8
9	The Role of RNA-Binding Protein OsTudor-SN in Post-Transcriptional Regulation of Seed Storage Proteins and Endosperm Development. Plant and Cell Physiology, 2019, 60, 2193-2205.	1.5	7
10	The rice storage protein mRNAs as a model system for RNA localization in higher plants. Plant Science, 2019, 284, 203-211.	1.7	9
11	Reâ€programming of gene expression in the CS 8 rice line overâ€expressing ADP glucose pyrophosphorylase induces a suppressor of starch biosynthesis. Plant Journal, 2019, 97, 1073-1088.	2.8	14
12	RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine mRNA Localization in Rice Endosperm Cells. Plant Cell, 2018, 30, 2529-2552.	3.1	47
13	Selective sets of mRNAs localize to extracellular paramural bodies in a rice glup6 mutant. Journal of Experimental Botany, 2018, 69, 5045-5058.	2.4	17
14	Multifunctional RNA Binding Protein OsTudor-SN in Storage Protein mRNA Transport and Localization. Plant Physiology, 2017, 175, 1608-1623.	2.3	27
15	Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. Journal of Experimental Botany, 2016, 67, 5557-5569.	2.4	88
16	The Dual Roles of the Golgi Transport 1 (GOT1B): RNA Localization to the Cortical Endoplasmic Reticulum and the Export of Proglutelin and \hat{l}_{\pm} -Globulin from the Cortical ER to the Golgi. Plant and Cell Physiology, 2016, 57, 2380-2391.	1.5	27
17	Rice Endosperm Starch Phosphorylase (Pho1) Assembles with Disproportionating Enzyme (Dpe1) to Form a Protein Complex That Enhances Synthesis of Malto-oligosaccharides. Journal of Biological Chemistry, 2016, 291, 19994-20007.	1.6	71
18	The plastidial starch phosphorylase from rice endosperm: catalytic properties at low temperature. Planta, 2016, 243, 999-1009.	1.6	29

#	Article	IF	CITATIONS
19	Analysis of the rice ADPglucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADPglucose flux into starch. Plant Physiology, 2016, 170, pp.01911.2015.	2.3	58
20	Increase of Grain Yields by Manipulating Starch Biosynthesis. , 2015, , 371-395.		7
21	Substrate binding properties of potato tuber ADPâ€glucose pyrophosphorylase as determined by isothermal titration calorimetry. FEBS Letters, 2015, 589, 1444-1449.	1.3	7
22	Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. Journal of Experimental Botany, 2015, 66, 6137-6147.	2.4	16
23	Developmental and Subcellular Organization of Single-Cell C4Photosynthesis inBienertia sinuspersiciDetermined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing. Journal of Proteome Research, 2015, 14, 2090-2108.	1.8	30
24	The Rice Endosperm ADP-Glucose Pyrophosphorylase Large Subunit is Essential for Optimal Catalysis and Allosteric Regulation of the Heterotetrameric Enzyme. Plant and Cell Physiology, 2014, 55, 1169-1183.	1.5	69
25	Multiple RNA Binding Protein Complexes Interact with the Rice Prolamine RNA Cis-Localization Zipcode Sequences. Plant Physiology, 2014, 164, 1271-1282.	2.3	20
26	The role of the large subunit in redox regulation of the rice endosperm <scp>ADP</scp> â€glucose pyrophosphorylase. FEBS Journal, 2014, 281, 4951-4963.	2.2	21
27	Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC Plant Biology, 2014, 14, 34.	1.6	16
28	Characterization of RNA binding protein RBP-P reveals a possible role in rice glutelin gene expression and RNA localization. Plant Molecular Biology, 2014, 85, 381-394.	2.0	20
29	mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells. Current Opinion in Plant Biology, 2014, 22, 77-85.	3.5	26
30	Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: Expectations and unanticipated outcomes. Plant Science, 2013, 211, 52-60.	1.7	115
31	Modulation of Allosteric Regulation by E38K and G101N Mutations in the Potato Tuber ADP-glucose Pyrophosphorylase. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1854-1859.	0.6	2
32	A Guanine Nucleotide Exchange Factor for Rab5 Proteins Is Essential for Intracellular Transport of the Proglutelin from the Golgi Apparatus to the Protein Storage Vacuole in Rice Endosperm \hat{A} \hat{A} \hat{A} . Plant Physiology, 2013, 162, 663-674.	2.3	51
33	RiceRBP: A Resource for Experimentally Identified RNA Binding Proteins in Oryza sativa. Frontiers in Plant Science, 2012, 3, 90.	1.7	18
34	RNA targeting to a specific ER subâ€domain is required for efficient transport and packaging of αâ€globulins to the protein storage vacuole in developing rice endosperm. Plant Journal, 2012, 70, 471-479.	2.8	41
35	Redox Regulation of Rice Endosperm ADPâ€glucose Pyrophosphorylase. FASEB Journal, 2012, 26, .	0.2	2
36	RiceRBP: A database of experimentally identified RNA-binding proteins in Oryza sativa L Plant Science, 2011, 180, 204-211.	1.7	23

#	Article	IF	CITATIONS
37	Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Science, 2011, 181, 275-281.	1.7	61
38	In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide. Plant Cell Reports, 2011, 30, 1541-1553.	2.8	13
39	The Small GTPase Rab5a Is Essential for Intracellular Transport of Proglutelin from the Golgi Apparatus to the Protein Storage Vacuole and Endosomal Membrane Organization in Developing Rice Endosperm Â. Plant Physiology, 2011, 157, 632-644.	2.3	44
40	Resolving the Compartmentation and Function of C4 Photosynthesis in the Single-Cell C4 Species Bienertia sinuspersici Â. Plant Physiology, 2011, 155, 1612-1628.	2.3	43
41	How do single cell C4 species form dimorphic chloroplasts?. Plant Signaling and Behavior, 2011, 6, 762-765.	1.2	9
42	A Role for the Cysteine-Rich 10 kDa Prolamin in Protein Body I Formation in Rice. Plant and Cell Physiology, 2011, 52, 1003-1016.	1.5	53
43	Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C4 species Bienertia sinuspersici. Functional Plant Biology, 2010, 37, 1.	1.1	33
44	Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. Planta, 2010, 231, 1261-1276.	1.6	53
45	Characterization of the potato upreg1gene, encoding a mutated ADP-glucose pyrophosphorylase large subunit, in transformed rice. Plant Cell, Tissue and Organ Culture, 2010, 102, 171-179.	1.2	10
46	The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynthesis Research, 2010, 106, 201-214.	1.6	31
47	Protein Disulfide Isomerase Like 1-1 Participates in the Maturation of Proglutelin Within the Endoplasmic Reticulum in Rice Endosperm. Plant and Cell Physiology, 2010, 51, 1581-1593.	1.5	77
48	Characterization of the rice glup4 mutant suggests a role for the small GTPase Rab5 in the biosynthesis of carbon and nitrogen storage reserves in developing endosperm. Breeding Science, 2010, 60, 556-567.	0.9	16
49	Gene-gene interactions between mutants that accumulate abnormally high amounts of proglutelin in rice seed. Breeding Science, 2010, 60, 568-574.	0.9	23
50	Rice endosperm-specific plastidial α-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Archives of Biochemistry and Biophysics, 2010, 495, 82-92.	1.4	75
51	Identification of cis-Localization Elements that Target Glutelin RNAs to a Specific Subdomain of the Cortical Endoplasmic Reticulum in Rice Endosperm Cells. Plant and Cell Physiology, 2009, 50, 1710-1714.	1.5	35
52	Control of Starch Synthesis in Cereals: Metabolite Analysis of Transgenic Rice Expressing an Up-Regulated Cytoplasmic ADP-Glucose Pyrophosphorylase in Developing Seeds. Plant and Cell Physiology, 2009, 50, 635-643.	1.5	52
53	Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C4 photosynthesis in Bienertia sinuspersici. Planta, 2009, 229, 369-382.	1.6	25
54	Kinetic and regulatory properties of plant ADP-glucose pyrophosphorylase genetically modified by heterologous expression of potato upreg mutants inÂvitro and inÂvivo. Plant Cell, Tissue and Organ Culture, 2009, 96, 161-170.	1,2	26

#	Article	IF	CITATIONS
55	Identification of <i>cis</i> à€localization elements of the maize 10â€kDa δâ€zein and their use in targeting RNAs to specific cortical endoplasmic reticulum subdomains. Plant Journal, 2009, 60, 146-155.	2.8	28
56	Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. Journal of Proteome Research, 2009, 8, 4641-4653.	1.8	35
57	Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). Plant Science, 2009, 176, 616-626.	1.7	29
58	Photosynthetic features of non-Kranz type C4 versus Kranz type C4 and C3 species in subfamily Suaedoideae (Chenopodiaceae). Functional Plant Biology, 2009, 36, 770.	1.1	22
59	The cytoplasmicâ€localized, cytoskeletalâ€associated RNA binding protein <i>Os</i> Tudorâ€5N: evidence for an essential role in storage protein RNA transport and localization. Plant Journal, 2008, 55, 443-454.	2.8	48
60	Mutation of the Plastidial \hat{l}_{\pm} -Glucan Phosphorylase Gene in Rice Affects the Synthesis and Structure of Starch in the Endosperm. Plant Cell, 2008, 20, 1833-1849.	3.1	250
61	Direct Appraisal of the Potato Tuber ADP-glucose Pyrophosphorylase Large Subunit in Enzyme Function by Study of a Novel Mutant Form. Journal of Biological Chemistry, 2008, 283, 6640-6647.	1.6	30
62	Leaf Development in the Single-Cell C ₄ System in <i>Bienertia sinuspersici</i> : Expression of Genes and Peptide Levels for C ₄ Metabolism in Relation to Chlorenchyma Structure under Different Light Conditions. Plant Physiology, 2008, 148, 593-610.	2.3	38
63	Subunit interactions specify the allosteric regulatory properties of the potato tuber ADP-glucose pyrophosphorylase. Biochemical and Biophysical Research Communications, 2007, 362, 301-306.	1.0	15
64	Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology, 2007, 65, 531-546.	2.0	178
65	Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit. Phytochemistry, 2007, 68, 464-477.	1.4	41
66	ATP binding site in the plant ADP-glucose pyrophosphorylase large subunit. FEBS Letters, 2006, 580, 6741-6748.	1.3	27
67	Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana. Plant Science, 2006, 170, 1-11.	1.7	51
68	Targeting of RNAs to ER Subdomains and its Relationship to Protein Localization. Plant Cell Monographs, 2006, , 25-43.	0.4	4
69	The role of mRNA and protein sorting in seed storage protein synthesis, transport, and deposition. Biochemistry and Cell Biology, 2005, 83, 728-737.	0.9	48
70	Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits. FEBS Letters, 2005, 579, 983-990.	1.3	50
71	Asymmetric Localization of Seed Storage Protein RNAs to Distinct Subdomains of the Endoplasmic Reticulum in Developing Maize Endosperm Cells. Plant and Cell Physiology, 2004, 45, 1830-1837.	1.5	33
72	Targeting of Proteins to Endoplasmic Reticulum-Derived Compartments in Plants. The Importance of RNA Localization. Plant Physiology, 2004, 136, 3414-3419.	2.3	64

#	Article	lF	CITATIONS
73	Both Subunits of ADP-Glucose Pyrophosphorylase Are Regulatory. Plant Physiology, 2004, 135, 137-144.	2.3	94
74	A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits. Plant Journal, 2004, 41, 501-511.	2.8	36
75	Rapid purification of the potato ADP–glucose pyrophosphorylase by polyhistidine-mediated chromatography. Protein Expression and Purification, 2004, 38, 99-107.	0.6	19
76	Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADP-glucose pyrophosphorylase. Plant Science, 2004, 167, 1323-1333.	1.7	115
77	Expression, kinetics and regulatory properties of native and recombinant ADP-glucose pyrophosphorylase isoforms from chickpea. Plant Physiology and Biochemistry, 2003, 41, 399-405.	2.8	4
78	Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid. Planta, 2003, 217, 449-456.	1.6	32
79	The Transport of Prolamine RNAs to Prolamine Protein Bodies in Living Rice Endosperm Cells[W]. Plant Cell, 2003, 15, 2253-2264.	3.1	72
80	Dual Regulated RNA Transport Pathways to the Cortical Region in Developing Rice Endosperm. Plant Cell, 2003, 15, 2265-2272.	3.1	69
81	Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate Precipitation in Vacuoles of Specialized Cells. Plant Physiology, 2003, 133, 549-559.	2.3	57
82	Metabolic Engineering of Starch for Enhanced Plant Productivity and Yields. Journal of Applied Glycoscience (1999), 2003, 50, 201-206.	0.3	6
83	Isolation and Characterization of Starch Mutants in Rice. Journal of Applied Glycoscience (1999), 2003, 50, 225-230.	0.3	44
84	Isolation and Characterization of Two cDNAs for Large and Small Subunits of ADP-glucose Pyrophosphorylase from Kidney Bean. Journal of Applied Glycoscience (1999), 2003, 50, 475-479.	0.3	3
85	The Rice Mutant esp2 Greatly Accumulates the Glutelin Precursor and Deletes the Protein Disulfide Isomerase. Plant Physiology, 2002, 128, 1212-1222.	2.3	211
86	Interactions of Nitrate and CO2 Enrichment on Growth, Carbohydrates, and Rubisco in Arabidopsis Starch Mutants. Significance of Starch and Hexose. Plant Physiology, 2002, 130, 1573-1583.	2.3	60
87	Directed molecular evolution of ADP-glucose pyrophosphorylase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1070-1075.	3.3	55
88	mRNA localization in plants: targeting to the cell's cortical region and beyond. Current Opinion in Plant Biology, 2002, 5, 553-559.	3.5	86
89	Generation, characterization, and heterologous expression of wild-type and up-regulated forms of Arabidopsis thaliana leaf ADP-glucose pyrophosphorylase. Planta, 2002, 215, 430-439.	1.6	32
90	Isolation and characterization of cDNA clones encoding ADP-glucose pyrophosphorylase (AGPase) large and small subunits from chickpea (Cicer arietinum L.). Phytochemistry, 2002, 59, 261-268.	1.4	13

#	Article	IF	CITATIONS
91	Investigation of Subunit Function in ADP-Glucose Pyrophosphorylase. Biochemical and Biophysical Research Communications, 2001, 281, 783-787.	1.0	32
92	Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Science, 2001, 161, 461-468.	1.7	106
93	Identification of a cytoskeleton-associated 120 kDa RNA-binding protein in developing rice seeds. Plant Molecular Biology, 2001, 46, 79-88.	2.0	40
94	Analysis of Allosteric Effector Binding Sites of Potato ADP-glucose Pyrophosphorylase through Reverse Genetics. Journal of Biological Chemistry, 2001, 276, 40834-40840.	1.6	37
95	Transcriptional Expression Characteristics and Subcellular Localization of ADP-Glucose Pyrophosphorylase in the Oil Plant Perilla frutescens. Plant and Cell Physiology, 2001, 42, 146-153.	1.5	28
96	Increasing Rice Productivity and Yield by Manipulation of Starch Synthesis. Novartis Foundation Symposium, 2001, 236, 135-152.	1.2	16
97	Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature, 2000, 407, 765-767.	13.7	166
98	The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Functional Plant Biology, 2000, 27, 561.	1.1	9
99	Developing prolamine protein bodies are associated with the cortical cytoskeleton in rice endosperm cells. Planta, 2000, 211, 227-238.	1.6	31
100	The production of recombinant proteins in transgenic barley grains. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1914-1919.	3.3	188
101	A cytoskeleton-associated RNA-binding protein binds to the untranslated regions of prolamine mRNA and to poly(A). Plant Science, 2000, 152, 115-122.	1.7	14
102	Engineering starch for increased quantity and quality. Trends in Plant Science, 2000, 5, 291-298.	4.3	160
103	Isolation and characterization of a higher plant ADP-glucose pyrophosphorylase small subunit homotetramer. FEBS Letters, 2000, 482, 113-118.	1.3	35
104	Modification of Carbon Partitioning, Photosynthetic Capacity, and O2 Sensitivity in Arabidopsis Plants with Low ADP-Glucose Pyrophosphorylase Activity1. Plant Physiology, 1999, 119, 267-276.	2.3	99
105	Feedback inhibition of photosynthesis in rice measured by O2 dependent transients. Photosynthesis Research, 1999, 59, 187-200.	1.6	24
106	Rice Glutelins., 1999,, 401-425.		38
107	The Prolamins of Rice. , 1999, , 93-108.		13
108	Substrate binding mutants of the higher plant ADP-glucose phrophosphorylase. Phytochemistry, 1998, 47, 621-629.	1.4	26

#	Article	IF	CITATIONS
109	N- and C-terminal peptide sequences are essential for enzyme assembly, allosteric, and/or catalytic properties of ADP-glucose pyrophosphorylase. Plant Journal, 1998, 14, 159-168.	2.8	42
110	Evidence for a Cytoskeleton-Associated Binding Site Involved in Prolamine mRNA Localization to the Protein Bodies in Rice Endosperm Tissue1. Plant Physiology, 1998, 116, 559-569.	2.3	53
111	Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10322-10327.	3.3	51
112	The Storage Proteins of Rice and Oat. Advances in Cellular and Molecular Biology of Plants, 1997, , 289-330.	0.2	29
113	Identification of positive and negative regulatory cis-elements of the rice glutelin Gt3 promoter. Plant Science, 1996, 116, 27-35.	1.7	18
114	A single mutation that increases maize seed weight Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5824-5829.	3.3	211
115	Mutagenesis of the potato ADPglucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1509-1513.	3.3	51
116	Cis-elements important for the expression of the ADP-glucose pyrophosphorylase small-subunit are located both upstream and downstream from its structural gene. Molecular Genetics and Genomics, 1996, 250, 581-592.	2.4	6
117	COMPARTMENTATION OF PROTEINS IN THE ENDOMEMBRANE SYSTEM OF PLANT CELLS. Annual Review of Plant Biology, 1996, 47, 327-350.	14.2	165
118	Cis. Molecular Genetics and Genomics, 1996, 250, 581.	2.4	2
118		2.4	2 43
	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation		
119	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Molecular Biology, 1995, 29, 685-689. Chapter 13 Localization of RNA by High Resolution in Situ Hybridization. Methods in Cell Biology, 1995,	2.0	43
119	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Molecular Biology, 1995, 29, 685-689. Chapter 13 Localization of RNA by High Resolution in Situ Hybridization. Methods in Cell Biology, 1995, 49, 185-199. Tissue-specific expression and temporal regulation of the rice glutelin Gt3 gene are conferred by at	2.0	43 1
119 120 121	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Molecular Biology, 1995, 29, 685-689. Chapter 13 Localization of RNA by High Resolution in Situ Hybridization. Methods in Cell Biology, 1995, 49, 185-199. Tissue-specific expression and temporal regulation of the rice glutelin Gt3 gene are conferred by at least two spatially separatedcis-regulatory elements. Plant Molecular Biology, 1994, 25, 429-436.	2.0 0.5 2.0	43 1 37
119 120 121 122	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Molecular Biology, 1995, 29, 685-689. Chapter 13 Localization of RNA by High Resolution in Situ Hybridization. Methods in Cell Biology, 1995, 49, 185-199. Tissue-specific expression and temporal regulation of the rice glutelin Ct3 gene are conferred by at least two spatially separatedcis-regulatory elements. Plant Molecular Biology, 1994, 25, 429-436. Targeting of mRNAs to domains of the endoplasmic reticulum. Trends in Cell Biology, 1994, 4, 91-96.	2.0 0.5 2.0	43 1 37 44
119 120 121 122	Cis. Molecular Genetics and Genomics, 1996, 250, 581. Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Molecular Biology, 1995, 29, 685-689. Chapter 13 Localization of RNA by High Resolution in Situ Hybridization. Methods in Cell Biology, 1995, 49, 185-199. Tissue-specific expression and temporal regulation of the rice glutelin Gt3 gene are conferred by at least two spatially separatedcis-regulatory elements. Plant Molecular Biology, 1994, 25, 429-436. Targeting of mRNAs to domains of the endoplasmic reticulum. Trends in Cell Biology, 1994, 4, 91-96. Prospects for the Production of Cereals with Improved Starch Properties., 1994, , 115-127.	2.0 0.5 2.0 3.6	43 1 37 44 5

#	Article	IF	CITATIONS
127	Enhancement of Plant Productivity by Manipulation of ADPglucose Pyrophosphorylase. Stadler Genetics Symposia Series, 1993, , 161-191.	0.0	8
128	Is There an Alternative Pathway for Starch Synthesis?. Plant Physiology, 1992, 100, 560-564.	2.3	131
129	Molecular characterization of the gene encoding a rice endosperm-specific ADPglucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene, 1991, 97, 199-205.	1.0	47
130	Structural and functional analysis of promoter from gliadin, an endosperm-specific storage protein gene of Triticum aestivum L Molecular Genetics and Genomics, 1991, 225, 65-71.	2.4	18
131	Accurate in vitro transcription of plant promoters with nuclear extracts prepared from cultured plant cells. Plant Molecular Biology, 1991, 16, 771-786.	2.0	19
132	Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Molecular Biology, 1991, 17, 1089-1093.	2.0	84
133	Expression of a rice glutelin promoter in transgenic tobacco. Plant Molecular Biology, 1990, 14, 41-50.	2.0	56
134	The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase. Plant Physiology, 1990, 93, 785-790.	2.3	177
135	Molecular Aspects of Storage Protein and Starch Synthesis in Wheat and Rice Seeds., 1989,, 289-327.		3
136	Regulation of Starch Synthesis. ACS Symposium Series, 1989, , 84-92.	0.5	8
137	Immunocytochemical Localization of ADPglucose Pyrophosphorylase in Developing Potato Tuber Cells. Plant Physiology, 1989, 91, 217-220.	2.3	52
138	Formation of wheat protein bodies: Involvement of the Golgi apparatus in gliadin transport. Planta, 1988, 176, 173-182.	1.6	83
139	Nucleotide and primary sequence of a major rice prolamine. FEBS Letters, 1988, 231, 308-310.	1.3	36
140	Immunological relationships among the major seed proteins of cereals. Plant Science, 1988, 57, 103-111.	1.7	20
141	Structure, Expression, and Heterogeneity of the Rice Seed Prolamines. Plant Physiology, 1988, 88, 649-655.	2.3	80
142	Analyses of $\hat{l}\pm\hat{l}^2$ -type gliadin genes from diploid and hexaploid wheats. Gene, 1987, 52, 257-266.	1.0	57
143	Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta, 1986, 169, 471-480.	1.6	214
144	ADPglucose Pyrophosphorylase Is Encoded by Different mRNA Transcripts in Leaf and Endosperm of Cereals. Plant Physiology, 1986, 81, 642-645.	2.3	74

#	Article	IF	CITATIONS
145	Structural Relationship among the Rice Glutelin Polypeptides. Plant Physiology, 1986, 81, 748-753.	2.3	85
146	Gene Expression in Developing Wheat Endosperm. Plant Physiology, 1986, 82, 34-40.	2.3	49
147	Nonrandom DNA sequencing of exonuclease III-deleted complementary DNA. Analytical Biochemistry, 1985, 144, 207-211.	1.1	7
148	Wheat Invertases. Plant Physiology, 1985, 78, 241-245.	2.3	94
149	Identification and DNA sequence analysis of a ?-type gliadin cDNA plasmid from winter wheat. Plant Molecular Biology, 1984, 3, 325-332.	2.0	25
150	Wheat Storage Proteins. Plant Physiology, 1982, 69, 834-839.	2.3	27
151	[49] Isolation of Escherichia coli structural genes coding for the glycogen biosynthetic enzymes. Methods in Enzymology, 1982, 83, 549-556.	0.4	4
152	Starch Degradation in Spinach Leaves. Plant Physiology, 1980, 66, 870-876.	2.3	53
153	Characterization of the Spinach Leaf Phosphorylases. Plant Physiology, 1980, 66, 864-869.	2.3	65
154	Subcellular Localization of the Starch Degradative and Biosynthetic Enzymes of Spinach Leaves. Plant Physiology, 1979, 64, 187-192.	2.3	149
155	Synthesis of a Possible Precursor of α-Amylase in Wheat Aleurone Cells. Plant Physiology, 1979, 63, 195-200.	2.3	36
156	Role of silicon in diatom metabolism IX. Differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. Nucleic Acids and Protein Synthesis, 1978, 519, 76-86.	1.7	28
157	Isolation and characterization of cytoplasmic and chloroplastic ribosomes and their ribosomal RNAs from the diatom Cylindrotheca fusiformis. Archives of Microbiology, 1977, 111, 247-253.	1.0	2
158	The pyridine nucleotide cycle: Presence of a nicotinamide mononucleotide-specific glycohydrolase in Escherichiacoli. Biochemical and Biophysical Research Communications, 1972, 49, 264-269.	1.0	37
159	RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. Frontiers in Plant Science, 0, 13, .	1.7	11