Yun-Guo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3470601/publications.pdf

Version: 2024-02-01

209 papers 18,902 citations

73 h-index

9786

130 g-index

210 all docs

 $\begin{array}{c} 210 \\ \\ \text{docs citations} \end{array}$

210 times ranked

16140 citing authors

#	Article	IF	Citations
1	Fe3N nanoparticles embedded in N-doped porous magnetic graphene for peroxymonosulfate activation: Radical and nonradical mechanism. Chemosphere, 2022, 305, 135317.	8.2	10
2	A review: Research progress on microplastic pollutants in aquatic environments. Science of the Total Environment, 2021, 766, 142572.	8.0	189
3	Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of $17l^2$ -estradiol: Synthesis, performance and mechanism. Journal of Colloid and Interface Science, 2021, 588, 776-786.	9.4	45
4	Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure. Ecotoxicology and Environmental Safety, 2021, 208, 111510.	6.0	45
5	Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects. Journal of Cleaner Production, 2021, 321, 128781.	9.3	29
6	Adsorption of $17\hat{l}^2$ -estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar. Journal of Environmental Sciences, 2020, 87, 10-23.	6.1	69
7	Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. Journal of Hazardous Materials, 2020, 384, 121470.	12.4	121
8	Efficient Removal of Diclofenac from Aqueous Solution by Potassium Ferrate-Activated Porous Graphitic Biochar: Ambient Condition Influences and Adsorption Mechanism. International Journal of Environmental Research and Public Health, 2020, 17, 291.	2.6	39
9	Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chemical Engineering Journal, 2020, 387, 124097.	12.7	91
10	Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. International Journal of Environmental Research and Public Health, 2020, 17, 6.	2.6	46
11	Efficient Removal 17-Estradiol by Graphene-Like Magnetic Sawdust Biochar: Preparation Condition and Adsorption Mechanism. International Journal of Environmental Research and Public Health, 2020, 17, 8377.	2.6	16
12	Combination of Wastewater Treatment Measures and Landscape Ecological Design in Traditional Villages Based on Sustainability Theory: A Case Study of Miao Village in Xiangxi, China. IOP Conference Series: Earth and Environmental Science, 2020, 526, 012023.	0.3	0
13	Catalytic degradation of sulfamethoxazole by persulfate activated with magnetic graphitized biochar: Multiple mechanisms and variables effects. Chemical Engineering Research and Design, 2020, 144, 143-157.	5.6	29
14	Magnetic gelatin-activated biochar synthesis from agricultural biomass for the removal of sodium diclofenac from aqueous solution: adsorption performance and external influence. International Journal of Environmental Analytical Chemistry, 2020, , 1-26.	3.3	2
15	Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design. International Journal of Environmental Research and Public Health, 2020, 17, 6648.	2.6	8
16	Activation of persulfate by graphitized biochar for sulfamethoxazole removal: The roles of graphitic carbon structure and carbonyl group. Journal of Colloid and Interface Science, 2020, 577, 419-430.	9.4	94
17	Design and Synthesis of a Biochar-Supported Nano Manganese Dioxide Composite for Antibiotics Removal From Aqueous Solution. Frontiers in Environmental Science, 2020, 8, .	3.3	21
18	Removal of Sulfamethoxazole in Aqueous Solutions by Iron-Based Advanced Oxidation Processes: Performances and Mechanisms. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	11

#	Article	IF	CITATIONS
19	Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere, 2020, 250, 126268.	8.2	56
20	Effects of heteroaggregation with metal oxides and clays on tetracycline adsorption by graphene oxide. Science of the Total Environment, 2020, 719, 137283.	8.0	30
21	Synthesis a graphene-like magnetic biochar by potassium ferrate for $17\hat{l}^2$ -estradiol removal: Effects of Al2O3 nanoparticles and microplastics. Science of the Total Environment, 2020, 715, 136723.	8.0	46
22	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	10.3	234
23	Synthesis of Porous Biochar Containing Graphitic Carbon Derived From Lignin Content of Forestry Biomass and Its Application for the Removal of Diclofenac Sodium From Aqueous Solution. Frontiers in Chemistry, 2020, 8, 274.	3.6	15
24	Different adsorption behaviors and mechanisms of a novel amino-functionalized hydrothermal biochar for hexavalent chromium and pentavalent antimony. Bioresource Technology, 2020, 310, 123438.	9.6	70
25	Removal of $17\hat{l}^2$ -estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 330-339.	5.3	42
26	Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism. Bioresource Technology, 2019, 290, 121765.	9.6	42
27	Functionalized Biochar/Clay Composites for Reducing the Bioavailable Fraction of Arsenic and Cadmium in River Sediment. Environmental Toxicology and Chemistry, 2019, 38, 2337-2347.	4.3	48
28	Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Chemical Engineering Research and Design, 2019, 128, 329-341.	5.6	42
29	Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects. Chemical Engineering Journal, 2019, 378, 122141.	12.7	158
30	Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Hexavalent Chromium and Methylene Blue by g-C3N4/BiFeO3/Carbon Nanotubes Ternary Composites. International Journal of Environmental Research and Public Health, 2019, 16, 3219.	2.6	22
31	Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in <i>Boehmeria nivea</i> (L.) Gaudich. Environmental Science: Nano, 2019, 6, 851-862.	4.3	34
32	Adsorption studies of 17β-estradiol from aqueous solution using a novel stabilized Fe–Mn binary oxide nanocomposite. Environmental Science and Pollution Research, 2019, 26, 7614-7626.	5.3	14
33	Removal of $17\hat{l}^2$ -Estradiol from water by adsorption onto montmorillonite-carbon hybrids derived from pyrolysis carbonization of carboxymethyl cellulose. Journal of Environmental Management, 2019, 236, 25-33.	7.8	25
34	Acute Toxicity of Divalent Mercury Ion to Anguilla japonica from Seawater and Freshwater Aquaculture and Its Effects on Tissue Structure. International Journal of Environmental Research and Public Health, 2019, 16, 1965.	2.6	10
35	Enhancement of Detoxification of Petroleum Hydrocarbons and Heavy Metals in Oil-Contaminated Soil by Using Glycine- \hat{l}^2 -Cyclodextrin. International Journal of Environmental Research and Public Health, 2019, 16, 1155.	2.6	18
36	Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review. Chemosphere, 2019, 226, 360-380.	8.2	254

#	Article	IF	CITATIONS
37	Facile synthesis of MnO _x â€loaded biochar for the removal of doxycycline hydrochloride: effects of ambient conditions and coâ€existing heavy metals. Journal of Chemical Technology and Biotechnology, 2019, 94, 2187-2197.	3.2	41
38	Recent advances in biochar-based catalysts: Properties, applications and mechanisms for pollution remediation. Chemical Engineering Journal, 2019, 371, 380-403.	12.7	191
39	Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Science of the Total Environment, 2019, 666, 1126-1133.	8.0	122
40	Adsorption mechanism of polyethyleneimine modified magnetic core–shell Fe ₃ O ₄ @SiO ₂ nanoparticles for anionic dye removal. RSC Advances, 2019, 9, 32462-32471.	3.6	34
41	N- and O-Doped Carbon Dots for Rapid and High-Throughput Dual Detection of Trace Amounts of Iron in Water and Organic Phases. Journal of Fluorescence, 2019, 29, 137-144.	2.5	7
42	Insights into the effect of chemical treatment on the physicochemical characteristics and adsorption behavior of pig manure-derived biochars. Environmental Science and Pollution Research, 2019, 26, 1962-1972.	5.3	7
43	Adsorption of $17\hat{l}^2$ -estradiol by a novel attapulgite/biochar nanocomposite: Characteristics and influencing factors. Chemical Engineering Research and Design, 2019, 121, 155-164.	5.6	54
44	Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecological Engineering, 2019, 127, 519-526.	3.6	37
45	Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. Journal of Colloid and Interface Science, 2018, 521, 150-159.	9.4	127
46	Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicology and Environmental Safety, 2018, 153, 229-237.	6.0	118
47	Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresource Technology, 2018, 261, 265-271.	9.6	278
48	Decontamination of Cr(VI) by graphene oxide@TiO ₂ in an aerobic atmosphere: effects of pH, ferric ions, inorganic anions, and formate. Journal of Chemical Technology and Biotechnology, 2018, 93, 2226-2233.	3.2	30
49	Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for $17\hat{l}^2$ -estradiol and $17\hat{l}^\pm$ -ethynylestradiol removal. RSC Advances, 2018, 8, 4273-4283.	3.6	33
50	Removal of copper ions by fewâ€layered graphene oxide nanosheets from aqueous solutions: external influences and adsorption mechanisms. Journal of Chemical Technology and Biotechnology, 2018, 93, 2447-2455.	3.2	24
51	Adsorption of estrogen contaminants $(17\hat{l}^2$ -estradiol and $17\hat{l}$ ±-ethynylestradiol) by graphene nanosheets from water: Effects of graphene characteristics and solution chemistry. Chemical Engineering Journal, 2018, 339, 296-302.	12.7	42
52	Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2018, 148, 953-959.	6.0	58
53	Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 2018, 253, 64-71.	9.6	214
54	The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicology and Environmental Safety, 2018, 158, 162-170.	6.0	82

#	Article	IF	CITATIONS
55	Cover Image, Volume 93, Issue 4. Journal of Chemical Technology and Biotechnology, 2018, 93, i-i.	3.2	0
56	Adsorption of $17\hat{1}^2$ -estradiol by graphene oxide: Effect of heteroaggregation with inorganic nanoparticles. Chemical Engineering Journal, 2018, 343, 371-378.	12.7	36
57	Nitrogen-containing amino compounds functionalized graphene oxide: Synthesis, characterization and application for the removal of pollutants from wastewater: A review. Journal of Hazardous Materials, 2018, 342, 177-191.	12.4	131
58	Comparative study of rice husk biochars for aqueous antibiotics removal. Journal of Chemical Technology and Biotechnology, 2018, 93, 1075-1084.	3.2	41
59	A case study of evaluating zeolite, CaCO3, and MnO2 for Cd-contaminated sediment reuse in soil. Journal of Soils and Sediments, 2018, 18, 323-332.	3.0	14
60	Titanium dioxideâ€coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants. Journal of Chemical Technology and Biotechnology, 2018, 93, 783-791.	3.2	73
61	Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology, 2018, 38, 455-468.	9.0	158
62	Influence of sodium dodecyl sulfate coating on adsorption of methylene blue by biochar from aqueous solution. Journal of Environmental Sciences, 2018, 70, 166-174.	6.1	42
63	Heavy metal leachability in soil amended with zeolite- or biochar-modified contaminated sediment. Environmental Monitoring and Assessment, 2018, 190, 751.	2.7	15
64	Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9. Biodegradation, 2018, 29, 605-616.	3.0	13
65	Fabrication of Stabilized Fe–Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors. International Journal of Environmental Research and Public Health, 2018, 15, 2218.	2.6	12
66	Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application. Journal of Central South University, 2018, 25, 2182-2189.	3.0	6
67	Alginate-modified biochar derived from Ca(II)-impregnated biomass: Excellent anti-interference ability for Pb(II) removal. Ecotoxicology and Environmental Safety, 2018, 165, 211-218.	6.0	45
68	Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for $17\hat{1}^2$ -estradiol and copper. Science of the Total Environment, 2018, 639, 1530-1542.	8.0	142
69	Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Frontiers in Chemistry, 2018, 6, 80.	3.6	143
70	The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere, 2018, 208, 655-664.	8.2	113
71	Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms. Chemical Engineering Journal, 2017, 314, 612-621.	12.7	38
72	Effects of calcium at toxic concentrations of cadmium in plants. Planta, 2017, 245, 863-873.	3.2	169

#	Article	IF	CITATIONS
73	Enhancement of As(<scp>v</scp>) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Advances, 2017, 7, 10891-10900.	3.6	106
74	Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon. Environmental Science & Eamp; Technology, 2017, 51, 6352-6359.	10.0	151
75	Property Variation of Magnetic Mesoporous Carbon Modified by Aminated Hollow Magnetic Nanospheres: Synthesis, Characterization, and Sorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 179-188.	6.7	33
76	Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere, 2017, 179, 20-28.	8.2	129
77	Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Science of the Total Environment, 2017, 592, 546-553.	8.0	154
78	Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: Competition and enhancement mechanisms. Chemical Engineering Journal, 2017, 319, 219-228.	12.7	157
79	Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology, 2017, 227, 359-372.	9.6	487
80	Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal, 2017, 314, 223-231.	12.7	278
81	Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere, 2017, 170, 17-24.	8.2	127
82	Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria) Tj ETQq0 0 Pollution Research, 2017, 24, 23528-23537.	0 rgBT /O\ 5.3	verlock 10 Tf : 30
83	Stabilized Nanoscale Zerovalent Iron Mediated Cadmium Accumulation and Oxidative Damage of <i>Boehmeria nivea</i> (L.) Gaudich Cultivated in Cadmium Contaminated Sediments. Environmental Science & E	10.0	248
84	Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 2017, 506, 355-364.	9.4	342
85	Remediation of Pb-contaminated port sediment by biosurfactant from Bacillus sp. G1. Transactions of Nonferrous Metals Society of China, 2017, 27, 1385-1393.	4.2	1
86	Fabrication of hydrochar functionalized Fe $\hat{a}\in Mn$ binary oxide nanocomposites: characterization and $17\hat{l}^2$ -estradiol removal. RSC Advances, 2017, 7, 37122-37129.	3.6	34
87	Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere, 2017, 27, 645-661.	4.0	137
88	Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. Journal of Hazardous Materials, 2017, 324, 340-347.	12.4	56
89	Adsorption of Cu(II), Pb(II), and Cd(II) Ions from Acidic Aqueous Solutions by Diethylenetriaminepentaacetic Acid-Modified Magnetic Graphene Oxide. Journal of Chemical & Samp; Engineering Data, 2017, 62, 407-416.	1.9	82
90	Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite. Carbohydrate Polymers, 2017, 157, 576-585.	10.2	245

#	Article	IF	CITATIONS
91	Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: Influencing factors and uptake mechanism. Journal of Colloid and Interface Science, 2017, 485, 269-279.	9.4	138
92	Fabrication of \hat{l}^2 -cyclodextrin/poly (l -glutamic acid) supported magnetic graphene oxide and its adsorption behavior for $17\hat{l}^2$ -estradiol. Chemical Engineering Journal, 2017, 308, 597-605.	12.7	187
93	Adsorption Removal of $17\hat{l}^2$ -Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry. International Journal of Environmental Research and Public Health, 2017, 14, 1213.	2.6	40
94	Efficient Removal of Tetracycline from Aqueous Media with a Fe3O4 Nanoparticles@graphene Oxide Nanosheets Assembly. International Journal of Environmental Research and Public Health, 2017, 14, 1495.	2.6	41
95	Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design. PLoS ONE, 2017, 12, e0187166.	2.5	22
96	Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 2016, 218, 351-359.	9.6	286
97	Removal of Pb(i) from aqueous solution by magnetic humic acid/chitosan composites. Journal of Central South University, 2016, 23, 2809-2817.	3.0	11
98	One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste. Scientific Reports, 2016, 6, 39691.	3.3	107
99	Maintaining eco-health of urban waterscapes with imbedded integrating ecological entity: Experimental approach. Journal of Central South University, 2016, 23, 2827-2837.	3.0	2
100	Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 2016, 212, 318-333.	9.6	654
101	Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea) Tj ETQq1 Management, 2016, 184, 85-93.	1 0.784314 7.8	FrgBT /Overlo
102	A novel graphene oxide coated biochar composite: synthesis, characterization and application for Cr(<scp>vi</scp>) removal. RSC Advances, 2016, 6, 85202-85212.	3.6	57
103	Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Advances, 2016, 6, 79275-79284.	3.6	30
104	Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environmental Science and Pollution Research, 2016, 23, 23606-23618.	5.3	89
105	Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide. Scientific Reports, 2016, 6, 34378.	3.3	35
106	Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide. RSC Advances, 2016, 6, 106201-106210.	3.6	49
107	Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 10189-10199.	5.3	48
108	Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	633

#	Article	IF	CITATIONS
109	Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environmental Science and Pollution Research, 2016, 23, 8699-8708.	5.3	54
110	Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. Journal of Environmental Sciences, 2016, 43, 40-47.	6.1	49
111	Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 2016, 6, 5871-5880.	3.6	82
112	The use of microbial-earthworm ecofilters for wastewater treatment with special attention to influencing factors in performance: A review. Bioresource Technology, 2016, 200, 999-1007.	9.6	58
113	Decontamination of methylene blue from aqueous solution by magnetic chitosan lignosulfonate grafted with graphene oxide: effects of environmental conditions and surfactant. RSC Advances, 2016, 6, 19298-19307.	3.6	40
114	Competitive removal of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) by biochars produced from water hyacinths: performance and mechanism. RSC Advances, 2016, 6, 5223-5232.	3.6	124
115	Effective removal of Cr(<scp>vi</scp>) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 2016, 6, 94-104.	3.6	221
116	Sensitive and selective detection of mercury ions based on papain and 2,6-pyridinedicarboxylic acid functionalized gold nanoparticles. RSC Advances, 2016, 6, 3259-3266.	3.6	33
117	Removal of $17\hat{l}^2$ -estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chemical Engineering Journal, 2016, 284, 93-102.	12.7	258
118	Biochar amendment to leadâ€contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice. Environmental Toxicology and Chemistry, 2015, 34, 1962-1968.	4.3	12
119	Cadmium accumulation and apoplastic and symplastic transport in Boehmeria nivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. RSC Advances, 2015, 5, 47584-47591.	3.6	35
120	Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fibers from aqueous solution. RSC Advances, 2015, 5, 25389-25397.	3.6	22
121	Mitigation mechanism of Cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. RSC Advances, 2015, 5, 45502-45509.	3.6	16
122	Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(<scp>vi</scp>) from aqueous solution. RSC Advances, 2015, 5, 46955-46964.	3.6	182
123	Adsorption behavior of Cr(<scp>vi</scp>) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Advances, 2015, 5, 45384-45392.	3.6	63
124	Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(<scp>vi</scp>) removal. RSC Advances, 2015, 5, 106339-106349.	3.6	29
125	Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.)) Tj ETQq1 1 0.7	784314 rg 5.3	gBT_/Overlock
126	Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management, 2015, 153, 68-73.	7.8	258

#	Article	IF	Citations
127	Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere, 2015, 127, 35-41.	8.2	31
128	Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environmental Science and Pollution Research, 2015, 22, 3489-3497.	5. 3	55
129	Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125, 70-85.	8.2	1,324
130	Tartaric acid modified Pleurotus ostreatus for enhanced removal of Cr(<scp>vi</scp>) ions from aqueous solution: characteristics and mechanisms. RSC Advances, 2015, 5, 24009-24015.	3.6	13
131	The effects of P. aeruginosa ATCC 9027 and NTA on phytoextraction of Cd by ramie (Boehmeria nivea (L.)) Tj ET	Qq1,10.7	84314 rgBT
132	Synthesis and adsorption application of amine shield-introduced-released porous chitosan hydrogel beads for removal of acid orange 7 from aqueous solutions. RSC Advances, 2015, 5, 62778-62787.	3.6	12
133	Immobilization of Cd(II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 2015, 22, 12597-12604.	5.3	67
134	Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environmental Science and Pollution Research, 2015, 22, 6271-6279.	5.3	83
135	Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 2015, 22, 9400-9412.	5.3	127
136	Effect of porous zinc–biochar nanocomposites on Cr(<scp>vi</scp>) adsorption from aqueous solution. RSC Advances, 2015, 5, 35107-35115.	3.6	223
137	Bioreduction of Chromate by an Isolated Bacillus anthracis Cr-4 with Soluble Cr(III) Product. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	27
138	Removal of Chromium (VI) from Aqueous Solution Using Mycelial Pellets of Penicillium simplicissimum Impregnated with Powdered Biochar. Bioremediation Journal, 2015, 19, 259-268.	2.0	13
139	Time-dependent antioxidative responses of ramie (Boehmeria nivea (L.) Gaudich) to moderate cadmium stress and its up-regulation mechanism by spermidine antioxidant. RSC Advances, 2015, 5, 76141-76149.	3.6	4
140	Application of molecularly imprinted polymers in wastewater treatment: a review. Environmental Science and Pollution Research, 2015, 22, 963-977.	5.3	208
141	Adsorption of copper by magnetic graphene oxide-supported \hat{l}^2 -cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid. Chemical Engineering Research and Design, 2015, 93, 675-683.	5.6	85
142	The Optimal Root Length for <i>Vetiveria zizanioides </i> Vetiveria zizanioides International Journal of Phytoremediation, 2015, 17, 563-567.	3.1	7
143	Preparation, Photoelectricity Property and Photocatalytic Activity of Alkaline-Earth Metals Modified TiO2 Nanoparticles. Asian Journal of Chemistry, 2014, 26, 5447-5452.	0.3	3
144	Mechanism of exogenous selenium alleviates cadmium induced toxicity in Bechmeria nivea (L.) Gaud (Ramie). Transactions of Nonferrous Metals Society of China, 2014, 24, 3964-3970.	4.2	20

#	Article	IF	CITATIONS
145	Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. Journal of Environmental Sciences, 2014, 26, 2508-2516.	6.1	53
146	Influence of thinning on acidic deposition in Chinese fir plantations. Journal of Central South University, 2014, 21, 694-700.	3.0	3
147	An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study. Ecological Engineering, 2014, 64, 18-26.	3.6	39
148	Titanium(IV) hydrate based on chitosan template for defluoridation from aqueous solution. Applied Surface Science, 2014, 293, 46-54.	6.1	26
149	Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber. Journal of Colloid and Interface Science, 2014, 434, 152-158.	9.4	43
150	Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide–supported sulfanilic acid. Journal of Colloid and Interface Science, 2014, 435, 138-144.	9.4	76
151	Grafting of \hat{l}^2 -cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydrate Polymers, 2014, 113, 166-173.	10.2	141
152	Effects of indole-3-acetic, kinetin and spermidine assisted with EDDS on metal accumulation and tolerance mechanisms in ramie (Boehmeria nivea (L.) Gaud.). Ecological Engineering, 2014, 71, 108-112.	3.6	27
153	Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics. Journal of Central South University, 2014, 21, 2810-2818.	3.0	3
154	A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation. Journal of Environmental Sciences, 2014, 26, 1090-1098.	6.1	36
155	Effects of d-menthol stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905. Chemosphere, 2014, 113, 30-35.	8.2	12
156	Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets. Journal of Colloid and Interface Science, 2014, 426, 213-220.	9.4	43
157	Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905. Ecotoxicology and Environmental Safety, 2014, 105, 121-127.	6.0	29
158	Co-culture with Cyperus alternifolius induces physiological and biochemical inhibitory effects in Microcystis aeruginosa. Biochemical Systematics and Ecology, 2014, 56, 118-124.	1.3	14
159	Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions. Chemical Engineering Journal, 2013, 226, 131-138.	12.7	61
160	Adsorption of Cr(VI) by modified chitosan from heavy-metal polluted water of Xiangjiang River, China. Transactions of Nonferrous Metals Society of China, 2013, 23, 3095-3103.	4.2	29
161	Optimization of Fenton pretreatment for 2-chlorophenol solution. Journal of Central South University, 2013, 20, 2791-2795.	3.0	2
162	Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae. Journal of Central South University, 2013, 20, 2478-2488.	3.0	20

#	Article	IF	Citations
163	Biosorption of copper(II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Transactions of Nonferrous Metals Society of China, 2013, 23, 1804-1814.	4.2	51
164	Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chemical Engineering Journal, 2013, 214, 189-197.	12.7	134
165	Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and Purification Technology, 2013, 108, 189-195.	7.9	204
166	Influence of sulfur addition/solids content ratio on removal of heavy metals from mine tailings by bioleaching. Journal of Central South University, 2012, 19, 3540-3545.	3.0	8
167	Mechanisms of Efficient Arsenite Uptake by Arsenic Hyperaccumulator Pteris vittata. Environmental Science & Environmental Scie	10.0	56
168	Exploring harmonious development between urbanization and eco-environment based on climate analysisâ€"A study in Changsha, China. Central South University, 2011, 18, 101-107.	0.5	4
169	Impacts of land-use change on ecosystem service value in Changsha, China. Journal of Central South University, 2011, 18, 420-428.	3.0	19
170	Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2011, 185, 306-314.	12.4	730
171	Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. Journal of Environmental Radioactivity, 2010, 101, 504-508.	1.7	112
172	Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 2010, 177, 676-682.	12.4	205
173	Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environmental and Experimental Botany, 2010, 68, 222-229.	4.2	63
174	Direct current stimulation of Thiobacillus ferrooxidans bacterial metabolism in a bioelectrical reactor without cation-specific membrane. Bioresource Technology, 2010, 101, 6035-6038.	9.6	21
175	Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology, 2010, 101, 6297-6303.	9.6	114
176	Influence factors analysis of removing heavy metals from multiple metal-contaminated soils with different extractants. Central South University, 2009, 16, 108-111.	0.5	8
177	Speciation of chromium in soil inoculated with Cr(VI)-reducing strain, Bacillus sp. XW-4. Central South University, 2009, 16, 253-257.	0.5	2
178	Effects of EDTA on Mechanism of Lead Accumulation in Typha orientalis Presl. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 553-557.	2.7	12
179	Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresource Technology, 2009, 100, 5079-5084.	9.6	82
180	Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants. Journal of Hazardous Materials, 2009, 164, 936-940.	12.4	30

#	Article	IF	Citations
181	Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa. Transactions of Nonferrous Metals Society of China, 2009, 19, 1336-1341.	4.2	52
182	Biosorption of $Cu(II)$ and $Zn(II)$ by intact and pre-treated biomass of Oscillatoria planctonica. International Journal of Environment and Pollution, 2009, 38, 1.	0.2	3
183	Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—Rice straw. Journal of Hazardous Materials, 2008, 150, 446-452.	12.4	223
184	Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 2008, 160, 655-661.	12.4	406
185	Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresource Technology, 2008, 99, 4124-4129.	9.6	137
186	Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud Environmental and Experimental Botany, 2008, 62, 389-395.	4.2	269
187	Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere, 2008, 72, 1260-1266.	8.2	73
188	Tolerance and removal of chromium(VI) by Bacillus sp. strain YB-1 isolated from electroplating sludge. Transactions of Nonferrous Metals Society of China, 2008, 18, 480-487.	4.2	19
189	Simultaneous removal of Cr(VI) and phenol in consortium culture of Bacillus sp. and Pseudomonas putida Migula (CCTCC AB92019). Transactions of Nonferrous Metals Society of China, 2008, 18, 1014-1020.	4.2	17
190	Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, 2007, 69, 99-107.	8.2	121
191	Effects of added Cd on Cd uptake by oilseed rape and pai-tsai co-cropping. Transactions of Nonferrous Metals Society of China, 2007, 17, 846-852.	4.2	14
192	Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. Journal of Hazardous Materials, 2007, 141, 202-208.	12.4	64
193	Kinetic and Equilibrium Studies of Cr(VI) Biosorption by Dead Bacillus licheniformis Biomass. World Journal of Microbiology and Biotechnology, 2007, 23, 43-48.	3.6	108
194	Achieving fast oxygen response in individual \hat{l}^2 -Ga2O3 nanowires by ultraviolet illumination. Applied Physics Letters, 2006, 89, 112114.	3.3	76
195	Heavy Metal Accumulation in Plants on Mn Mine Tailings. Pedosphere, 2006, 16, 131-136.	4.0	54
196	Redistribution of Pb, Zn and Cu Fractions in Tailing Soils Treated with Different Extractants. Pedosphere, 2006, 16, 312-318.	4.0	10
197	Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger. Transactions of Nonferrous Metals Society of China, 2006, 16, 681-686.	4.2	87
198	Advances in Research on Genetically Engineered Plants for Metal Resistance. Journal of Integrative Plant Biology, 2006, 48, 1257-1265.	8.5	13

#	ARTICLE	IF	CITATIONS
199	Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 2006, 577, 264-270.	5.4	141
200	Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochemistry, 2006, 41, 1981-1986.	3.7	147
201	A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene. Sensors and Actuators B: Chemical, 2006, 114, 308-315.	7.8	79
202	Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Applied Physics Letters, 2006, 88, 201907.	3.3	101
203	Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contact. Applied Physics Letters, 2006, 89, 243514.	3.3	54
204	Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. Journal of Hazardous Materials, 2005, 126, 17-22.	12.4	22
205	A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene. Analytica Chimica Acta, 2005, 547, 221-228.	5.4	32
206	Effects of Exogenous Spermidine on Antioxidant System Responses of Typha latifolia L. Under Cd2+ Stress. Journal of Integrative Plant Biology, 2005, 47, 428-434.	8.5	51
207	Experimental study on Cr (V) reduction by Pseudomonas aeruginosa. Journal of Environmental Sciences, 2004, 16, 797-801.	6.1	18
208	Promoting Influence of Organic Carbon Source on Chromate Reduction by <i>Bacillus</i> sp Advanced Materials Research, 0, 610-613, 1789-1794.	0.3	2
209	Fabrication of Partially Graphitic Biochar for the Removal of Diclofenac and Ibuprofen from Aqueous Solution: Laboratory Conditions and Real Sample Applications. Environmental Engineering Science, 0, ,	1.6	10